A Raman lidar at La Reunion (20.8° S, 55.5° E) for monitoring water vapour and cirrus distributions in the subtropical upper troposphere: preliminary analyses and description of a future system
A ground-based Rayleigh lidar has provided continuous observations of tropospheric water vapour profiles and cirrus cloud using a preliminary Raman channels setup on an existing Rayleigh lidar above La Reunion over the period 2002–2005. With this instrument, we performed a first measurement campaign...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2012-06-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | http://www.atmos-meas-tech.net/5/1333/2012/amt-5-1333-2012.pdf |
Summary: | A ground-based Rayleigh lidar has provided continuous observations of tropospheric water vapour profiles and cirrus cloud using a preliminary Raman channels setup on an existing Rayleigh lidar above La Reunion over the period 2002–2005. With this instrument, we performed a first measurement campaign of 350 independent water vapour profiles. A statistical study of the distribution of water vapour profiles is presented and some investigations concerning the calibration are discussed. Analysis regarding the cirrus clouds is presented and a classification has been performed showing 3 distinct classes. Based on these results, the characteristics and the design of a future lidar system, to be implemented at the new Reunion Island altitude observatory (2200 m) for long-term monitoring, is presented and numerical simulations of system performance have been realised to compare both instruments. |
---|---|
ISSN: | 1867-1381 1867-8548 |