Piezoelectric Materials Under Natural and Man-Made Radiation: The Potential for Direct Radiation Detection

Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach,...

Full description

Bibliographic Details
Main Authors: Wart Megan, Simpson Evan, Flaska Marek
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Subjects:
Online Access:https://doi.org/10.1051/epjconf/201817001020
Description
Summary:Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT) plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.
ISSN:2100-014X