Forced Responses of the Parametric Vibration System for the Electromechanical Integrated Magnetic Gear

Considering the magnetic fields modulating in the electromechanical integrated magnetic gear (EIMG), the electromagnetic coupling stiffnesses vary periodically and the expressions are given by the finite element method. The parametric vibration model and the dynamic differential equations are founde...

Full description

Bibliographic Details
Main Authors: Xiu-hong Hao, Xue-jun Zhu
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2015/572937
Description
Summary:Considering the magnetic fields modulating in the electromechanical integrated magnetic gear (EIMG), the electromagnetic coupling stiffnesses vary periodically and the expressions are given by the finite element method. The parametric vibration model and the dynamic differential equations are founded. The expressions of forced responses of EIMG system are deduced when the main resonances and the combination resonances occur. And then, the time and frequency responses are figured out. The dynamic characteristics of EIMG system are discussed. The results show that the dominant frequencies in the resonances are always the natural frequency of EIMG system. The relative amplitudes of the components have great difference and the components amplitudes of the main resonances are much bigger than the components amplitudes of the combination resonances. The time-varying meshing stiffness wave between the inner stator and the inner ferromagnetic pole-pieces has little influence on EIMG system.
ISSN:1070-9622
1875-9203