Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene

Summary: Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We sho...

Full description

Bibliographic Details
Main Authors: Ildem Akerman, Miguel Angel Maestro, Elisa De Franco, Vanessa Grau, Sarah Flanagan, Javier García-Hurtado, Gerhard Mittler, Philippe Ravassard, Lorenzo Piemonti, Sian Ellard, Andrew T. Hattersley, Jorge Ferrer
Format: Article
Language:English
Published: Elsevier 2021-04-01
Series:Cell Reports
Subjects:
HIP
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124721002953
id doaj-282fb6a0abd54a338e19484f6b2bb305
record_format Article
spelling doaj-282fb6a0abd54a338e19484f6b2bb3052021-04-16T04:53:27ZengElsevierCell Reports2211-12472021-04-01352108981Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin geneIldem Akerman0Miguel Angel Maestro1Elisa De Franco2Vanessa Grau3Sarah Flanagan4Javier García-Hurtado5Gerhard Mittler6Philippe Ravassard7Lorenzo Piemonti8Sian Ellard9Andrew T. Hattersley10Jorge Ferrer11Institute of Metabolism and Systems Research (IMSR), Medical School, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham, UK; Corresponding authorCentre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, SpainInstitute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UKCentre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, SpainInstitute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UKCentre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, SpainMax-Planck Institute for Immunobiology and Epigenetics, Freiburg, GermanyINSERM, CNRS, Paris Brain Institute - Hôpital Pitié-Salpêtrière, Paris, FranceDiabetes Research Institute, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, ItalyInstitute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UKInstitute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UKCentre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Corresponding authorSummary: Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.http://www.sciencedirect.com/science/article/pii/S2211124721002953INS promoterregulatory elementmouse modelneonatal diabetesGLIS3HIP
collection DOAJ
language English
format Article
sources DOAJ
author Ildem Akerman
Miguel Angel Maestro
Elisa De Franco
Vanessa Grau
Sarah Flanagan
Javier García-Hurtado
Gerhard Mittler
Philippe Ravassard
Lorenzo Piemonti
Sian Ellard
Andrew T. Hattersley
Jorge Ferrer
spellingShingle Ildem Akerman
Miguel Angel Maestro
Elisa De Franco
Vanessa Grau
Sarah Flanagan
Javier García-Hurtado
Gerhard Mittler
Philippe Ravassard
Lorenzo Piemonti
Sian Ellard
Andrew T. Hattersley
Jorge Ferrer
Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene
Cell Reports
INS promoter
regulatory element
mouse model
neonatal diabetes
GLIS3
HIP
author_facet Ildem Akerman
Miguel Angel Maestro
Elisa De Franco
Vanessa Grau
Sarah Flanagan
Javier García-Hurtado
Gerhard Mittler
Philippe Ravassard
Lorenzo Piemonti
Sian Ellard
Andrew T. Hattersley
Jorge Ferrer
author_sort Ildem Akerman
title Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene
title_short Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene
title_full Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene
title_fullStr Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene
title_full_unstemmed Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene
title_sort neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene
publisher Elsevier
series Cell Reports
issn 2211-1247
publishDate 2021-04-01
description Summary: Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.
topic INS promoter
regulatory element
mouse model
neonatal diabetes
GLIS3
HIP
url http://www.sciencedirect.com/science/article/pii/S2211124721002953
work_keys_str_mv AT ildemakerman neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT miguelangelmaestro neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT elisadefranco neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT vanessagrau neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT sarahflanagan neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT javiergarciahurtado neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT gerhardmittler neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT philipperavassard neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT lorenzopiemonti neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT sianellard neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT andrewthattersley neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
AT jorgeferrer neonataldiabetesmutationsdisruptachromatinpioneeringfunctionthatactivatesthehumaninsulingene
_version_ 1721525573184913408