A note on the convergence rates in precise asymptotics
Abstract Let {X,Xn,n≥1} $\{X, X_{n}, n\geq1\}$ be a sequence of i.i.d. random variables with EX=0 $EX=0$, EX2=σ2 $EX^{2}=\sigma^{2}$. Set Sn=∑k=1nXk $S_{n}=\sum_{k=1}^{n}X_{k}$ and let N ${\mathcal {N} }$ be the standard normal random variable. Let g(x) $g(x)$ be a positive and twice differentiable...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-019-1972-3 |
id |
doaj-298b981635684b76b775d1374caaeedc |
---|---|
record_format |
Article |
spelling |
doaj-298b981635684b76b775d1374caaeedc2020-11-25T01:29:16ZengSpringerOpenJournal of Inequalities and Applications1029-242X2019-01-012019111110.1186/s13660-019-1972-3A note on the convergence rates in precise asymptoticsYong Zhang0College of Mathematics, Jilin UniversityAbstract Let {X,Xn,n≥1} $\{X, X_{n}, n\geq1\}$ be a sequence of i.i.d. random variables with EX=0 $EX=0$, EX2=σ2 $EX^{2}=\sigma^{2}$. Set Sn=∑k=1nXk $S_{n}=\sum_{k=1}^{n}X_{k}$ and let N ${\mathcal {N} }$ be the standard normal random variable. Let g(x) $g(x)$ be a positive and twice differentiable function on [n0,∞) $[n_{0},\infty)$ such that g(x)↗∞ $g(x)\nearrow\infty $, g′(x)↘0 $g'(x)\searrow0$ as x→∞ $x\to\infty$. In this short note, under some suitable conditions on both X and g(x) $g(x)$, we establish the following convergence rates in precise asymptotics limε↘0[∑n=n0∞g′(n)P{|Sn|σn≥εgs(n)}−ε−1/sE|N|1/s]=γ−η, $$ \lim_{\varepsilon\searrow0}\Biggl[ \sum_{n=n_{0}}^{\infty} g'(n)P\biggl\{ \frac{|S_{n}|}{\sigma\sqrt{n}}\geq \varepsilon g^{s}(n) \biggr\} -{\varepsilon}^{-1/s}E|{\mathcal {N}}|^{1/s}\Biggr]=\gamma -\eta, $$ where γ=limn→∞(∑k=n0ng′(k)−g(n)) $\gamma=\lim_{n\to\infty}(\sum_{k=n_{0}}^{n}g'(k)-g(n))$, η=∑n=n0∞g′(n)P{Sn=0} $\eta=\sum_{n=n_{0}}^{\infty}g'(n)P\{S_{n}=0\}$. It can describe the relations among the boundary function, weighting function, convergence rate and the limit value in studies of complete convergence. The result extends and generalizes the corresponding results of Gut and Steinebach (Ann. Univ. Sci. Budapest. Sect. Comput. 39:95–110, 2013), Kong (Lith. Math. J. 56(3):318–324, 2016), Kong and Dai (Stat. Probab. Lett. 119(10):295–300, 2016).http://link.springer.com/article/10.1186/s13660-019-1972-3Convergence ratesPrecise asymptoticsComplete convergence |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yong Zhang |
spellingShingle |
Yong Zhang A note on the convergence rates in precise asymptotics Journal of Inequalities and Applications Convergence rates Precise asymptotics Complete convergence |
author_facet |
Yong Zhang |
author_sort |
Yong Zhang |
title |
A note on the convergence rates in precise asymptotics |
title_short |
A note on the convergence rates in precise asymptotics |
title_full |
A note on the convergence rates in precise asymptotics |
title_fullStr |
A note on the convergence rates in precise asymptotics |
title_full_unstemmed |
A note on the convergence rates in precise asymptotics |
title_sort |
note on the convergence rates in precise asymptotics |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2019-01-01 |
description |
Abstract Let {X,Xn,n≥1} $\{X, X_{n}, n\geq1\}$ be a sequence of i.i.d. random variables with EX=0 $EX=0$, EX2=σ2 $EX^{2}=\sigma^{2}$. Set Sn=∑k=1nXk $S_{n}=\sum_{k=1}^{n}X_{k}$ and let N ${\mathcal {N} }$ be the standard normal random variable. Let g(x) $g(x)$ be a positive and twice differentiable function on [n0,∞) $[n_{0},\infty)$ such that g(x)↗∞ $g(x)\nearrow\infty $, g′(x)↘0 $g'(x)\searrow0$ as x→∞ $x\to\infty$. In this short note, under some suitable conditions on both X and g(x) $g(x)$, we establish the following convergence rates in precise asymptotics limε↘0[∑n=n0∞g′(n)P{|Sn|σn≥εgs(n)}−ε−1/sE|N|1/s]=γ−η, $$ \lim_{\varepsilon\searrow0}\Biggl[ \sum_{n=n_{0}}^{\infty} g'(n)P\biggl\{ \frac{|S_{n}|}{\sigma\sqrt{n}}\geq \varepsilon g^{s}(n) \biggr\} -{\varepsilon}^{-1/s}E|{\mathcal {N}}|^{1/s}\Biggr]=\gamma -\eta, $$ where γ=limn→∞(∑k=n0ng′(k)−g(n)) $\gamma=\lim_{n\to\infty}(\sum_{k=n_{0}}^{n}g'(k)-g(n))$, η=∑n=n0∞g′(n)P{Sn=0} $\eta=\sum_{n=n_{0}}^{\infty}g'(n)P\{S_{n}=0\}$. It can describe the relations among the boundary function, weighting function, convergence rate and the limit value in studies of complete convergence. The result extends and generalizes the corresponding results of Gut and Steinebach (Ann. Univ. Sci. Budapest. Sect. Comput. 39:95–110, 2013), Kong (Lith. Math. J. 56(3):318–324, 2016), Kong and Dai (Stat. Probab. Lett. 119(10):295–300, 2016). |
topic |
Convergence rates Precise asymptotics Complete convergence |
url |
http://link.springer.com/article/10.1186/s13660-019-1972-3 |
work_keys_str_mv |
AT yongzhang anoteontheconvergenceratesinpreciseasymptotics AT yongzhang noteontheconvergenceratesinpreciseasymptotics |
_version_ |
1725097418322608128 |