A note on the convergence rates in precise asymptotics

Abstract Let {X,Xn,n≥1} $\{X, X_{n}, n\geq1\}$ be a sequence of i.i.d. random variables with EX=0 $EX=0$, EX2=σ2 $EX^{2}=\sigma^{2}$. Set Sn=∑k=1nXk $S_{n}=\sum_{k=1}^{n}X_{k}$ and let N ${\mathcal {N} }$ be the standard normal random variable. Let g(x) $g(x)$ be a positive and twice differentiable...

Full description

Bibliographic Details
Main Author: Yong Zhang
Format: Article
Language:English
Published: SpringerOpen 2019-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-019-1972-3
id doaj-298b981635684b76b775d1374caaeedc
record_format Article
spelling doaj-298b981635684b76b775d1374caaeedc2020-11-25T01:29:16ZengSpringerOpenJournal of Inequalities and Applications1029-242X2019-01-012019111110.1186/s13660-019-1972-3A note on the convergence rates in precise asymptoticsYong Zhang0College of Mathematics, Jilin UniversityAbstract Let {X,Xn,n≥1} $\{X, X_{n}, n\geq1\}$ be a sequence of i.i.d. random variables with EX=0 $EX=0$, EX2=σ2 $EX^{2}=\sigma^{2}$. Set Sn=∑k=1nXk $S_{n}=\sum_{k=1}^{n}X_{k}$ and let N ${\mathcal {N} }$ be the standard normal random variable. Let g(x) $g(x)$ be a positive and twice differentiable function on [n0,∞) $[n_{0},\infty)$ such that g(x)↗∞ $g(x)\nearrow\infty $, g′(x)↘0 $g'(x)\searrow0$ as x→∞ $x\to\infty$. In this short note, under some suitable conditions on both X and g(x) $g(x)$, we establish the following convergence rates in precise asymptotics limε↘0[∑n=n0∞g′(n)P{|Sn|σn≥εgs(n)}−ε−1/sE|N|1/s]=γ−η, $$ \lim_{\varepsilon\searrow0}\Biggl[ \sum_{n=n_{0}}^{\infty} g'(n)P\biggl\{ \frac{|S_{n}|}{\sigma\sqrt{n}}\geq \varepsilon g^{s}(n) \biggr\} -{\varepsilon}^{-1/s}E|{\mathcal {N}}|^{1/s}\Biggr]=\gamma -\eta, $$ where γ=limn→∞(∑k=n0ng′(k)−g(n)) $\gamma=\lim_{n\to\infty}(\sum_{k=n_{0}}^{n}g'(k)-g(n))$, η=∑n=n0∞g′(n)P{Sn=0} $\eta=\sum_{n=n_{0}}^{\infty}g'(n)P\{S_{n}=0\}$. It can describe the relations among the boundary function, weighting function, convergence rate and the limit value in studies of complete convergence. The result extends and generalizes the corresponding results of Gut and Steinebach (Ann. Univ. Sci. Budapest. Sect. Comput. 39:95–110, 2013), Kong (Lith. Math. J. 56(3):318–324, 2016), Kong and Dai (Stat. Probab. Lett. 119(10):295–300, 2016).http://link.springer.com/article/10.1186/s13660-019-1972-3Convergence ratesPrecise asymptoticsComplete convergence
collection DOAJ
language English
format Article
sources DOAJ
author Yong Zhang
spellingShingle Yong Zhang
A note on the convergence rates in precise asymptotics
Journal of Inequalities and Applications
Convergence rates
Precise asymptotics
Complete convergence
author_facet Yong Zhang
author_sort Yong Zhang
title A note on the convergence rates in precise asymptotics
title_short A note on the convergence rates in precise asymptotics
title_full A note on the convergence rates in precise asymptotics
title_fullStr A note on the convergence rates in precise asymptotics
title_full_unstemmed A note on the convergence rates in precise asymptotics
title_sort note on the convergence rates in precise asymptotics
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2019-01-01
description Abstract Let {X,Xn,n≥1} $\{X, X_{n}, n\geq1\}$ be a sequence of i.i.d. random variables with EX=0 $EX=0$, EX2=σ2 $EX^{2}=\sigma^{2}$. Set Sn=∑k=1nXk $S_{n}=\sum_{k=1}^{n}X_{k}$ and let N ${\mathcal {N} }$ be the standard normal random variable. Let g(x) $g(x)$ be a positive and twice differentiable function on [n0,∞) $[n_{0},\infty)$ such that g(x)↗∞ $g(x)\nearrow\infty $, g′(x)↘0 $g'(x)\searrow0$ as x→∞ $x\to\infty$. In this short note, under some suitable conditions on both X and g(x) $g(x)$, we establish the following convergence rates in precise asymptotics limε↘0[∑n=n0∞g′(n)P{|Sn|σn≥εgs(n)}−ε−1/sE|N|1/s]=γ−η, $$ \lim_{\varepsilon\searrow0}\Biggl[ \sum_{n=n_{0}}^{\infty} g'(n)P\biggl\{ \frac{|S_{n}|}{\sigma\sqrt{n}}\geq \varepsilon g^{s}(n) \biggr\} -{\varepsilon}^{-1/s}E|{\mathcal {N}}|^{1/s}\Biggr]=\gamma -\eta, $$ where γ=limn→∞(∑k=n0ng′(k)−g(n)) $\gamma=\lim_{n\to\infty}(\sum_{k=n_{0}}^{n}g'(k)-g(n))$, η=∑n=n0∞g′(n)P{Sn=0} $\eta=\sum_{n=n_{0}}^{\infty}g'(n)P\{S_{n}=0\}$. It can describe the relations among the boundary function, weighting function, convergence rate and the limit value in studies of complete convergence. The result extends and generalizes the corresponding results of Gut and Steinebach (Ann. Univ. Sci. Budapest. Sect. Comput. 39:95–110, 2013), Kong (Lith. Math. J. 56(3):318–324, 2016), Kong and Dai (Stat. Probab. Lett. 119(10):295–300, 2016).
topic Convergence rates
Precise asymptotics
Complete convergence
url http://link.springer.com/article/10.1186/s13660-019-1972-3
work_keys_str_mv AT yongzhang anoteontheconvergenceratesinpreciseasymptotics
AT yongzhang noteontheconvergenceratesinpreciseasymptotics
_version_ 1725097418322608128