Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton

Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Ther...

Full description

Bibliographic Details
Main Authors: Monica Miranda-Saksena, Christopher E. Denes, Russell J. Diefenbach, Anthony L. Cunningham
Format: Article
Language:English
Published: MDPI AG 2018-02-01
Series:Viruses
Subjects:
Online Access:http://www.mdpi.com/1999-4915/10/2/92
Description
Summary:Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons.
ISSN:1999-4915