Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement Protein
X-linked hypohidrotic ectodermal dysplasia with the cardinal symptoms hypodontia, hypotrichosis and hypohidrosis is caused by a genetic deficiency of ectodysplasin A1 (EDA1). Prenatal EDA1 replacement can rescue the development of skin appendages and teeth. Tabby mice, a natural animal model of EDA1...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-08-01
|
Series: | Frontiers in Genetics |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fgene.2021.709736/full |
id |
doaj-29f8c79279b345aaa0a27af1af43f8d9 |
---|---|
record_format |
Article |
spelling |
doaj-29f8c79279b345aaa0a27af1af43f8d92021-08-11T08:03:57ZengFrontiers Media S.A.Frontiers in Genetics1664-80212021-08-011210.3389/fgene.2021.709736709736Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement ProteinClara-Sophie Kossel0Clara-Sophie Kossel1Mandy Wahlbuhl2Mandy Wahlbuhl3Sonia Schuepbach-Mallepell4Jung Park5Jung Park6Christine Kowalczyk-Quintas7Michaela Seeling8Klaus von der Mark9Pascal Schneider10Holm Schneider11Holm Schneider12Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, GermanyCenter for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, GermanyDepartment of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, GermanyCenter for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, GermanyDepartment of Biochemistry, University of Lausanne, Epalinges, SwitzerlandDepartment of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, GermanyCenter for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, GermanyDepartment of Biochemistry, University of Lausanne, Epalinges, SwitzerlandDepartment of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, GermanyDepartment of Experimental Medicine I, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, GermanyDepartment of Biochemistry, University of Lausanne, Epalinges, SwitzerlandDepartment of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, GermanyCenter for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, GermanyX-linked hypohidrotic ectodermal dysplasia with the cardinal symptoms hypodontia, hypotrichosis and hypohidrosis is caused by a genetic deficiency of ectodysplasin A1 (EDA1). Prenatal EDA1 replacement can rescue the development of skin appendages and teeth. Tabby mice, a natural animal model of EDA1 deficiency, additionally feature a striking kink of the tail, the cause of which has remained unclear. We studied the origin of this phenomenon and its response to prenatal therapy. Alterations in the distal spine could be noticed soon after birth, and kinks were present in all Tabby mice by the age of 4 months. Although their vertebral bones frequently had a disorganized epiphyseal zone possibly predisposing to fractures, cortical bone density was only reduced in vertebrae of older Tabby mice and even increased in their tibiae. Different availability of osteoclasts in the spine, which may affect bone density, was ruled out by osteoclast staining. The absence of hair follicles, a well-known niche of epidermal stem cells, and much lower bromodeoxyuridine uptake in the tail skin of 9-day-old Tabby mice rather suggest the kink being due to a skin proliferation defect that prevents the skin from growing as fast as the skeleton, so that caudal vertebrae may be squeezed and bent by a lack of skin. Early postnatal treatment with EDA1 leading to delayed hair follicle formation attenuated the kink, but did not prevent it. Tabby mice born after prenatal administration of EDA1, however, showed normal tail skin proliferation, no signs of kinking and, interestingly, a normalized vertebral bone density. Thus, our data prove the causal relationship between EDA1 deficiency and kinky tails and indicate that hair follicles are required for murine tail skin to grow fast enough. Disturbed bone development appears to be partially pre-determined in utero and can be counteracted by timely EDA1 replacement, pointing to a role of EDA1 also in osteogenesis.https://www.frontiersin.org/articles/10.3389/fgene.2021.709736/fullbonedevelopmentectodysplasin A1ectodermal dysplasiafetal therapyNF-κB |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Clara-Sophie Kossel Clara-Sophie Kossel Mandy Wahlbuhl Mandy Wahlbuhl Sonia Schuepbach-Mallepell Jung Park Jung Park Christine Kowalczyk-Quintas Michaela Seeling Klaus von der Mark Pascal Schneider Holm Schneider Holm Schneider |
spellingShingle |
Clara-Sophie Kossel Clara-Sophie Kossel Mandy Wahlbuhl Mandy Wahlbuhl Sonia Schuepbach-Mallepell Jung Park Jung Park Christine Kowalczyk-Quintas Michaela Seeling Klaus von der Mark Pascal Schneider Holm Schneider Holm Schneider Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement Protein Frontiers in Genetics bone development ectodysplasin A1 ectodermal dysplasia fetal therapy NF-κB |
author_facet |
Clara-Sophie Kossel Clara-Sophie Kossel Mandy Wahlbuhl Mandy Wahlbuhl Sonia Schuepbach-Mallepell Jung Park Jung Park Christine Kowalczyk-Quintas Michaela Seeling Klaus von der Mark Pascal Schneider Holm Schneider Holm Schneider |
author_sort |
Clara-Sophie Kossel |
title |
Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement Protein |
title_short |
Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement Protein |
title_full |
Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement Protein |
title_fullStr |
Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement Protein |
title_full_unstemmed |
Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement Protein |
title_sort |
correction of vertebral bone development in ectodysplasin a1-deficient mice by prenatal treatment with a replacement protein |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Genetics |
issn |
1664-8021 |
publishDate |
2021-08-01 |
description |
X-linked hypohidrotic ectodermal dysplasia with the cardinal symptoms hypodontia, hypotrichosis and hypohidrosis is caused by a genetic deficiency of ectodysplasin A1 (EDA1). Prenatal EDA1 replacement can rescue the development of skin appendages and teeth. Tabby mice, a natural animal model of EDA1 deficiency, additionally feature a striking kink of the tail, the cause of which has remained unclear. We studied the origin of this phenomenon and its response to prenatal therapy. Alterations in the distal spine could be noticed soon after birth, and kinks were present in all Tabby mice by the age of 4 months. Although their vertebral bones frequently had a disorganized epiphyseal zone possibly predisposing to fractures, cortical bone density was only reduced in vertebrae of older Tabby mice and even increased in their tibiae. Different availability of osteoclasts in the spine, which may affect bone density, was ruled out by osteoclast staining. The absence of hair follicles, a well-known niche of epidermal stem cells, and much lower bromodeoxyuridine uptake in the tail skin of 9-day-old Tabby mice rather suggest the kink being due to a skin proliferation defect that prevents the skin from growing as fast as the skeleton, so that caudal vertebrae may be squeezed and bent by a lack of skin. Early postnatal treatment with EDA1 leading to delayed hair follicle formation attenuated the kink, but did not prevent it. Tabby mice born after prenatal administration of EDA1, however, showed normal tail skin proliferation, no signs of kinking and, interestingly, a normalized vertebral bone density. Thus, our data prove the causal relationship between EDA1 deficiency and kinky tails and indicate that hair follicles are required for murine tail skin to grow fast enough. Disturbed bone development appears to be partially pre-determined in utero and can be counteracted by timely EDA1 replacement, pointing to a role of EDA1 also in osteogenesis. |
topic |
bone development ectodysplasin A1 ectodermal dysplasia fetal therapy NF-κB |
url |
https://www.frontiersin.org/articles/10.3389/fgene.2021.709736/full |
work_keys_str_mv |
AT clarasophiekossel correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT clarasophiekossel correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT mandywahlbuhl correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT mandywahlbuhl correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT soniaschuepbachmallepell correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT jungpark correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT jungpark correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT christinekowalczykquintas correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT michaelaseeling correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT klausvondermark correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT pascalschneider correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT holmschneider correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein AT holmschneider correctionofvertebralbonedevelopmentinectodysplasina1deficientmicebyprenataltreatmentwithareplacementprotein |
_version_ |
1721211483618017280 |