Fixed point indices and manifolds with collars

<p>This paper concerns a formula which relates the Lefschetz number <mml:math> <mml:mi>L</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> for a map <mml:math>...

Full description

Bibliographic Details
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.hindawi.com/GetArticle.aspx?doi=10.1155/FPTA/2006/87657
id doaj-29fbb656a3684f6380a98aeae0af7932
record_format Article
spelling doaj-29fbb656a3684f6380a98aeae0af79322020-11-25T00:37:41ZengSpringerOpenFixed Point Theory and Applications1687-18202006-01-012006Fixed point indices and manifolds with collars<p>This paper concerns a formula which relates the Lefschetz number <mml:math> <mml:mi>L</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> for a map <mml:math> <mml:mi>f</mml:mi><mml:mo>:</mml:mo><mml:mi>M</mml:mi><mml:mo>&#x2192;</mml:mo><mml:msup> <mml:mi>M</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:math> to the fixed point index <mml:math> <mml:mi>I</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> summed with the fixed point index of a derived map on part of the boundary of <mml:math> <mml:mo>&#x2202;</mml:mo><mml:mi>M</mml:mi> </mml:math>. Here <mml:math> <mml:mi>M</mml:mi> </mml:math> is a compact manifold and <mml:math> <mml:msup> <mml:mi>M</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:math> is <mml:math> <mml:mi>M</mml:mi> </mml:math> with a collar attached.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/FPTA/2006/87657
collection DOAJ
language English
format Article
sources DOAJ
title Fixed point indices and manifolds with collars
spellingShingle Fixed point indices and manifolds with collars
Fixed Point Theory and Applications
title_short Fixed point indices and manifolds with collars
title_full Fixed point indices and manifolds with collars
title_fullStr Fixed point indices and manifolds with collars
title_full_unstemmed Fixed point indices and manifolds with collars
title_sort fixed point indices and manifolds with collars
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
publishDate 2006-01-01
description <p>This paper concerns a formula which relates the Lefschetz number <mml:math> <mml:mi>L</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> for a map <mml:math> <mml:mi>f</mml:mi><mml:mo>:</mml:mo><mml:mi>M</mml:mi><mml:mo>&#x2192;</mml:mo><mml:msup> <mml:mi>M</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:math> to the fixed point index <mml:math> <mml:mi>I</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> summed with the fixed point index of a derived map on part of the boundary of <mml:math> <mml:mo>&#x2202;</mml:mo><mml:mi>M</mml:mi> </mml:math>. Here <mml:math> <mml:mi>M</mml:mi> </mml:math> is a compact manifold and <mml:math> <mml:msup> <mml:mi>M</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:math> is <mml:math> <mml:mi>M</mml:mi> </mml:math> with a collar attached.</p>
url http://www.hindawi.com/GetArticle.aspx?doi=10.1155/FPTA/2006/87657
_version_ 1716138975316410368