Fixed point indices and manifolds with collars
<p>This paper concerns a formula which relates the Lefschetz number <mml:math> <mml:mi>L</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> for a map <mml:math>...
Format: | Article |
---|---|
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.hindawi.com/GetArticle.aspx?doi=10.1155/FPTA/2006/87657 |
id |
doaj-29fbb656a3684f6380a98aeae0af7932 |
---|---|
record_format |
Article |
spelling |
doaj-29fbb656a3684f6380a98aeae0af79322020-11-25T00:37:41ZengSpringerOpenFixed Point Theory and Applications1687-18202006-01-012006Fixed point indices and manifolds with collars<p>This paper concerns a formula which relates the Lefschetz number <mml:math> <mml:mi>L</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> for a map <mml:math> <mml:mi>f</mml:mi><mml:mo>:</mml:mo><mml:mi>M</mml:mi><mml:mo>→</mml:mo><mml:msup> <mml:mi>M</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:math> to the fixed point index <mml:math> <mml:mi>I</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> summed with the fixed point index of a derived map on part of the boundary of <mml:math> <mml:mo>∂</mml:mo><mml:mi>M</mml:mi> </mml:math>. Here <mml:math> <mml:mi>M</mml:mi> </mml:math> is a compact manifold and <mml:math> <mml:msup> <mml:mi>M</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:math> is <mml:math> <mml:mi>M</mml:mi> </mml:math> with a collar attached.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/FPTA/2006/87657 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
title |
Fixed point indices and manifolds with collars |
spellingShingle |
Fixed point indices and manifolds with collars Fixed Point Theory and Applications |
title_short |
Fixed point indices and manifolds with collars |
title_full |
Fixed point indices and manifolds with collars |
title_fullStr |
Fixed point indices and manifolds with collars |
title_full_unstemmed |
Fixed point indices and manifolds with collars |
title_sort |
fixed point indices and manifolds with collars |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 |
publishDate |
2006-01-01 |
description |
<p>This paper concerns a formula which relates the Lefschetz number <mml:math> <mml:mi>L</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> for a map <mml:math> <mml:mi>f</mml:mi><mml:mo>:</mml:mo><mml:mi>M</mml:mi><mml:mo>→</mml:mo><mml:msup> <mml:mi>M</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:math> to the fixed point index <mml:math> <mml:mi>I</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> summed with the fixed point index of a derived map on part of the boundary of <mml:math> <mml:mo>∂</mml:mo><mml:mi>M</mml:mi> </mml:math>. Here <mml:math> <mml:mi>M</mml:mi> </mml:math> is a compact manifold and <mml:math> <mml:msup> <mml:mi>M</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:math> is <mml:math> <mml:mi>M</mml:mi> </mml:math> with a collar attached.</p> |
url |
http://www.hindawi.com/GetArticle.aspx?doi=10.1155/FPTA/2006/87657 |
_version_ |
1716138975316410368 |