Prediction of the Rate of Penetration while Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique

Rate of penetration (ROP) is one of the most important drilling parameters for optimizing the cost of drilling hydrocarbon wells. In this study, a new empirical correlation based on an optimized artificial neural network (ANN) model was developed to predict ROP alongside horizontal drilling of carbo...

Full description

Bibliographic Details
Main Authors: Ahmad Al-AbdulJabbar, Salaheldin Elkatatny, Ahmed Abdulhamid Mahmoud, Tamer Moussa, Dhafer Al-Shehri, Mahmoud Abughaban, Abdullah Al-Yami
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/12/4/1376
Description
Summary:Rate of penetration (ROP) is one of the most important drilling parameters for optimizing the cost of drilling hydrocarbon wells. In this study, a new empirical correlation based on an optimized artificial neural network (ANN) model was developed to predict ROP alongside horizontal drilling of carbonate reservoirs as a function of drilling parameters, such as rotation speed, torque, and weight-on-bit, combined with conventional well logs, including gamma-ray, deep resistivity, and formation bulk density. The ANN model was trained using 3000 data points collected from Well-A and optimized using the self-adaptive differential evolution (SaDE) algorithm. The optimized ANN model predicted ROP for the training dataset with an average absolute percentage error (AAPE) of 5.12% and a correlation coefficient (R) of 0.960. A new empirical correlation for ROP was developed based on the weights and biases of the optimized ANN model. The developed correlation was tested on another dataset collected from Well-A, where it predicted ROP with AAPE and R values of 5.80% and 0.951, respectively. The developed correlation was then validated using unseen data collected from Well-B, where it predicted ROP with an AAPE of 5.29% and a high R of 0.956. The ANN-based correlation outperformed all previous correlations of ROP estimation that were developed based on linear regression, including a recent model developed by Osgouei that predicted the ROP for the validation data with a high AAPE of 14.60% and a low R of 0.629.
ISSN:2071-1050