Group-Invariant Solutions for Two-Dimensional Free, Wall, and Liquid Jets Having Finite Fluid Velocity at Orifice
The group-invariant solutions for nonlinear third-order partial differential equation (PDE) governing flow in two-dimensional jets (free, wall, and liquid) having finite fluid velocity at orifice are constructed. The symmetry associated with the conserved vector that was used to derive the conserved...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2011-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2011/615612 |
Summary: | The group-invariant solutions for nonlinear third-order partial differential equation (PDE) governing flow in two-dimensional jets (free, wall, and liquid) having finite fluid velocity at orifice are constructed. The symmetry associated with the conserved vector that was used to derive the conserved quantity for the jets (free, wall, and liquid) generated the group invariant solution for the nonlinear third-order PDE for the stream function. The comparison between results for two-dimensional jet flows having finite and infinite fluid velocity at orifice is presented. The general form of the group invariant solution for two-dimensional jets is given explicitly. |
---|---|
ISSN: | 1024-123X 1563-5147 |