Implementation Issues of Flux Linkage Estimation on Permanent Magnet Machine Position Sensorless Drive at Low Speed

This paper improves the surface permanent magnet (PM) machine position sensorless drive at low speed. Considering the surface PM machine (SPM) drive, EMF voltage or flux linkage should be estimated for the sensorless drive. Different from EMF voltage, the flux linkage based on the voltage integratio...

Full description

Bibliographic Details
Main Authors: Guan-Ren Chen, Jyun-You Chen, Shih-Chin Yang
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8894475/
Description
Summary:This paper improves the surface permanent magnet (PM) machine position sensorless drive at low speed. Considering the surface PM machine (SPM) drive, EMF voltage or flux linkage should be estimated for the sensorless drive. Different from EMF voltage, the flux linkage based on the voltage integration is theoretically independent to speed which is suited for the low speed position estimation. In this paper, several improvements on the flux-based sensorless drive are proposed to enhance the low speed dynamic performance. First, a modified voltage integration is develop to remove the flux estimation drift caused by voltage or current offset. This integration contains a high-pass filter (HPF) for the DC drift elimination. In addtion, the filter delay is compensated to maintain the flux phase. Second, inverter deadtime harmonics are decoupled with the knowledge of actual machine phase voltages. It is shown that the position estimation error is decreased for the better low speed performance. According to experimental results, SPM machine sensorless drive is enhanced at 4%~6% speed region from many aspects. They include position signal SNR, position error and drive dynamic response. More importantly, the overall current regulation bandwidth can increase to 1kHz at low speed. It is compatible to standard encoder-based field oriented control (FOC) drives.
ISSN:2169-3536