Immune-Related Gene Expression Patterns in GPV- or H9N2-Infected Goose Spleens

Goose parvovirus (GPV) and avian influenza virus subtype H9N2 are single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA) viruses, respectively, both of which can spread in goslings and cause a significant economic loss. To explore the comprehensive transcriptome of GPV- or H9N2-infected goose s...

Full description

Bibliographic Details
Main Authors: Shun Chen, Anqi Wang, Lipei Sun, Fei Liu, Mingshu Wang, Renyong Jia, Dekang Zhu, Mafeng Liu, Qiao Yang, Ying Wu, Kunfeng Sun, Xiaoyue Chen, Anchun Cheng
Format: Article
Language:English
Published: MDPI AG 2016-12-01
Series:International Journal of Molecular Sciences
Subjects:
GPV
Online Access:http://www.mdpi.com/1422-0067/17/12/1990
Description
Summary:Goose parvovirus (GPV) and avian influenza virus subtype H9N2 are single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA) viruses, respectively, both of which can spread in goslings and cause a significant economic loss. To explore the comprehensive transcriptome of GPV- or H9N2-infected goose spleens and to understand the immune responses induced by a DNA virus (GPV) or a RNA virus (H9N2), RNA-seq was performed on the spleens of goslings at the fifth day post infection. In the present study, 2604 and 2409 differentially expressed unigenes were identified in the GPV- and H9N2-infected groups, respectively. Through KEGG pathway enrichment analyses, the up-regulated transcripts in the two virus-infected groups were mainly involved in immune-related pathways. In addition, the two virus-infected groups displayed similar expression patterns in the immune response pathways, including pattern-recognition receptor signaling pathways, the antigen processing and presentation pathway, the NF-κB signaling pathway and the JAK-STAT signaling pathway, as well as cytokines. Furthermore, most of the immune-related genes, particularly TLR7, TRAF3, Mx, TRIM25, CD4, and CD8α, increased in response to GPV and H9N2 infection. However, the depression of NF-κB signaling may be a mechanism by which the viruses evade the host immune system or a strategy to achieve immune homeostasis.
ISSN:1422-0067