The Transmuted Generalized Inverse Weibull Distribution

A generalization of the generalized inverse Weibull distribution the so-called transmuted generalized inverse Weibull distribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking the generali...

Full description

Bibliographic Details
Main Authors: Faton Merovci, Ibrahim Elbatal, Alaa Ahmed
Format: Article
Language:English
Published: Austrian Statistical Society 2014-05-01
Series:Austrian Journal of Statistics
Online Access:http://www.ajs.or.at/index.php/ajs/article/view/28
id doaj-2ceaff34c5ab46af97ec0a7f3afbe468
record_format Article
spelling doaj-2ceaff34c5ab46af97ec0a7f3afbe4682021-04-22T12:35:16ZengAustrian Statistical SocietyAustrian Journal of Statistics1026-597X2014-05-0143210.17713/ajs.v43i2.2810The Transmuted Generalized Inverse Weibull DistributionFaton Merovci0Ibrahim ElbatalAlaa AhmedUniversity of Prishtina, Kosovo A generalization of the generalized inverse Weibull distribution the so-called transmuted generalized inverse Weibull distribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking the generalized inverseWeibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expressions for the moments, quantiles, and moment generating function of the new distribution are derived. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the flexibility of the transmuted version versus the generalized inverse Weibull distribution. http://www.ajs.or.at/index.php/ajs/article/view/28
collection DOAJ
language English
format Article
sources DOAJ
author Faton Merovci
Ibrahim Elbatal
Alaa Ahmed
spellingShingle Faton Merovci
Ibrahim Elbatal
Alaa Ahmed
The Transmuted Generalized Inverse Weibull Distribution
Austrian Journal of Statistics
author_facet Faton Merovci
Ibrahim Elbatal
Alaa Ahmed
author_sort Faton Merovci
title The Transmuted Generalized Inverse Weibull Distribution
title_short The Transmuted Generalized Inverse Weibull Distribution
title_full The Transmuted Generalized Inverse Weibull Distribution
title_fullStr The Transmuted Generalized Inverse Weibull Distribution
title_full_unstemmed The Transmuted Generalized Inverse Weibull Distribution
title_sort transmuted generalized inverse weibull distribution
publisher Austrian Statistical Society
series Austrian Journal of Statistics
issn 1026-597X
publishDate 2014-05-01
description A generalization of the generalized inverse Weibull distribution the so-called transmuted generalized inverse Weibull distribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking the generalized inverseWeibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expressions for the moments, quantiles, and moment generating function of the new distribution are derived. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the flexibility of the transmuted version versus the generalized inverse Weibull distribution.
url http://www.ajs.or.at/index.php/ajs/article/view/28
work_keys_str_mv AT fatonmerovci thetransmutedgeneralizedinverseweibulldistribution
AT ibrahimelbatal thetransmutedgeneralizedinverseweibulldistribution
AT alaaahmed thetransmutedgeneralizedinverseweibulldistribution
AT fatonmerovci transmutedgeneralizedinverseweibulldistribution
AT ibrahimelbatal transmutedgeneralizedinverseweibulldistribution
AT alaaahmed transmutedgeneralizedinverseweibulldistribution
_version_ 1721514322261180416