Nanoparticle-Doped Polydimethylsiloxane Fluid Enhances the Optical Performance of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes

Abstract This paper proposes a new encapsulation structure for aluminum nitride-based deep UV light-emitting diodes (DUV-LEDs) and eutectic flip chips containing polydimethylsiloxane (PDMS) fluid doped with SiO2 nanoparticles (NPs) with a UV-transparent quartz hemispherical glass cover. Experimental...

Full description

Bibliographic Details
Main Authors: Zhi Ting Ye, Yung-Min Pai, Chih-Hao Lin, Lung-Chien Chen, Hong Thai Nguyen, Hsiang-Chen Wang
Format: Article
Language:English
Published: SpringerOpen 2019-07-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-019-3067-y
Description
Summary:Abstract This paper proposes a new encapsulation structure for aluminum nitride-based deep UV light-emitting diodes (DUV-LEDs) and eutectic flip chips containing polydimethylsiloxane (PDMS) fluid doped with SiO2 nanoparticles (NPs) with a UV-transparent quartz hemispherical glass cover. Experimental results reveal that the proposed encapsulation structure has considerably higher light output power than the traditional one. The light extraction efficiency was increased by 66.49% when the forward current of the DUV-LED was 200 mA. Doping the PDMS fluid with SiO2 NPs resulted in higher light output power than that of undoped fluid. The maximum efficiency was achieved at a doping concentration of 0.2 wt%. The optical output power at 200 mA forward current of the encapsulation structure with NP doping of the fluid was 15% higher than that without NP doping. The optical output power of the proposed encapsulation structure was 81.49% higher than that of the traditional encapsulation structure. The enhanced light output power was due to light scattering caused by the SiO2 NPs and the increased average refractive index. The encapsulation temperature can be reduced by 4 °C at a driving current of 200 mA by using the proposed encapsulation structure.
ISSN:1931-7573
1556-276X