Theoretical and experimental study of dual-fiber laser ablation for prostate cancer.

Single-fiber laser treatment of the prostate has been widely accepted in the clinic due to its minimal invasiveness and high controllability. However, for large tumors, multiple insertions of the laser probe would be needed to achieve full coverage of the tumor, increasing the complexity of the trea...

Full description

Bibliographic Details
Main Authors: Xing Wu, Kangwei Zhang, Yini Chen, Ren Wang, Lei Chen, Aili Zhang, Bing Hu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6200234?pdf=render
Description
Summary:Single-fiber laser treatment of the prostate has been widely accepted in the clinic due to its minimal invasiveness and high controllability. However, for large tumors, multiple insertions of the laser probe would be needed to achieve full coverage of the tumor, increasing the complexity of the treatment and occasionally resulting in the incomplete killing of tumor cells due to a mismatch between the planned insertion location and the actual probe insertion location. Treatment with a dual-fiber laser results in greater lesion coverage following a single insertion of the probe, with the lesion coverage being even greater than the sum of the coverage of two sequential insertion of a single-fiber laser probe, potentially reducing treatment time and clinical complications. Both theoretical and experimental analyses have been performed to evaluate the proposed dual-fiber laser treatment. A finite element model was established to simulate the treatment process. The simulation results indicated that there is a clear difference between the ablation coverage created using dual-fiber laser ablation and that created using the superposition of sequential single-fiber laser ablation. In addition, the coverage is dependent on the spacing distance between the two fibers. Both ex vivo and in vivo canine prostate tissues were treated by dual-fiber laser ablation, with lesions analyzed by magnetic resonance imaging (MRI), ultrasound imaging, and pathology. The results demonstrate that dual-fiber laser ablation can markedly increase the range of the ablation zone when compared with single-fiber modes. The safety and feasibility of dual-fiber laser treatment has been confirmed, and a treatment plan using dual-fiber laser ablation has also been proposed.
ISSN:1932-6203