ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century

<p>Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance...

Full description

Bibliographic Details
Main Authors: H. Seroussi, S. Nowicki, A. J. Payne, H. Goelzer, W. H. Lipscomb, A. Abe-Ouchi, C. Agosta, T. Albrecht, X. Asay-Davis, A. Barthel, R. Calov, R. Cullather, C. Dumas, B. K. Galton-Fenzi, R. Gladstone, N. R. Golledge, J. M. Gregory, R. Greve, T. Hattermann, M. J. Hoffman, A. Humbert, P. Huybrechts, N. C. Jourdain, T. Kleiner, E. Larour, G. R. Leguy, D. P. Lowry, C. M. Little, M. Morlighem, F. Pattyn, T. Pelle, S. F. Price, A. Quiquet, R. Reese, N.-J. Schlegel, A. Shepherd, E. Simon, R. S. Smith, F. Straneo, S. Sun, L. D. Trusel, J. Van Breedam, R. S. W. van de Wal, R. Winkelmann, C. Zhao, T. Zhang, T. Zwinger
Format: Article
Language:English
Published: Copernicus Publications 2020-09-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/14/3033/2020/tc-14-3033-2020.pdf
id doaj-2e30e29db70c4a43b7f755af333da47b
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author H. Seroussi
S. Nowicki
A. J. Payne
H. Goelzer
H. Goelzer
W. H. Lipscomb
A. Abe-Ouchi
C. Agosta
T. Albrecht
X. Asay-Davis
A. Barthel
R. Calov
R. Cullather
C. Dumas
B. K. Galton-Fenzi
R. Gladstone
N. R. Golledge
J. M. Gregory
J. M. Gregory
R. Greve
R. Greve
T. Hattermann
T. Hattermann
M. J. Hoffman
A. Humbert
A. Humbert
P. Huybrechts
N. C. Jourdain
T. Kleiner
E. Larour
G. R. Leguy
D. P. Lowry
C. M. Little
M. Morlighem
F. Pattyn
T. Pelle
S. F. Price
A. Quiquet
R. Reese
N.-J. Schlegel
A. Shepherd
E. Simon
R. S. Smith
F. Straneo
S. Sun
L. D. Trusel
J. Van Breedam
R. S. W. van de Wal
R. S. W. van de Wal
R. Winkelmann
R. Winkelmann
C. Zhao
T. Zhang
T. Zwinger
spellingShingle H. Seroussi
S. Nowicki
A. J. Payne
H. Goelzer
H. Goelzer
W. H. Lipscomb
A. Abe-Ouchi
C. Agosta
T. Albrecht
X. Asay-Davis
A. Barthel
R. Calov
R. Cullather
C. Dumas
B. K. Galton-Fenzi
R. Gladstone
N. R. Golledge
J. M. Gregory
J. M. Gregory
R. Greve
R. Greve
T. Hattermann
T. Hattermann
M. J. Hoffman
A. Humbert
A. Humbert
P. Huybrechts
N. C. Jourdain
T. Kleiner
E. Larour
G. R. Leguy
D. P. Lowry
C. M. Little
M. Morlighem
F. Pattyn
T. Pelle
S. F. Price
A. Quiquet
R. Reese
N.-J. Schlegel
A. Shepherd
E. Simon
R. S. Smith
F. Straneo
S. Sun
L. D. Trusel
J. Van Breedam
R. S. W. van de Wal
R. S. W. van de Wal
R. Winkelmann
R. Winkelmann
C. Zhao
T. Zhang
T. Zwinger
ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
The Cryosphere
author_facet H. Seroussi
S. Nowicki
A. J. Payne
H. Goelzer
H. Goelzer
W. H. Lipscomb
A. Abe-Ouchi
C. Agosta
T. Albrecht
X. Asay-Davis
A. Barthel
R. Calov
R. Cullather
C. Dumas
B. K. Galton-Fenzi
R. Gladstone
N. R. Golledge
J. M. Gregory
J. M. Gregory
R. Greve
R. Greve
T. Hattermann
T. Hattermann
M. J. Hoffman
A. Humbert
A. Humbert
P. Huybrechts
N. C. Jourdain
T. Kleiner
E. Larour
G. R. Leguy
D. P. Lowry
C. M. Little
M. Morlighem
F. Pattyn
T. Pelle
S. F. Price
A. Quiquet
R. Reese
N.-J. Schlegel
A. Shepherd
E. Simon
R. S. Smith
F. Straneo
S. Sun
L. D. Trusel
J. Van Breedam
R. S. W. van de Wal
R. S. W. van de Wal
R. Winkelmann
R. Winkelmann
C. Zhao
T. Zhang
T. Zwinger
author_sort H. Seroussi
title ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
title_short ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
title_full ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
title_fullStr ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
title_full_unstemmed ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
title_sort ismip6 antarctica: a multi-model ensemble of the antarctic ice sheet evolution over the 21st century
publisher Copernicus Publications
series The Cryosphere
issn 1994-0416
1994-0424
publishDate 2020-09-01
description <p>Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between <span class="inline-formula">−7.8</span> and 30.0&thinsp;cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0&thinsp;cm&thinsp;SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between <span class="inline-formula">−6.1</span> and 8.3&thinsp;cm&thinsp;SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28&thinsp;mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3&thinsp;cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.</p>
url https://tc.copernicus.org/articles/14/3033/2020/tc-14-3033-2020.pdf
work_keys_str_mv AT hseroussi ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT snowicki ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT ajpayne ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT hgoelzer ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT hgoelzer ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT whlipscomb ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT aabeouchi ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT cagosta ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT talbrecht ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT xasaydavis ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT abarthel ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rcalov ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rcullather ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT cdumas ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT bkgaltonfenzi ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rgladstone ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT nrgolledge ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT jmgregory ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT jmgregory ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rgreve ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rgreve ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT thattermann ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT thattermann ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT mjhoffman ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT ahumbert ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT ahumbert ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT phuybrechts ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT ncjourdain ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT tkleiner ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT elarour ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT grleguy ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT dplowry ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT cmlittle ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT mmorlighem ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT fpattyn ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT tpelle ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT sfprice ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT aquiquet ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rreese ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT njschlegel ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT ashepherd ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT esimon ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rssmith ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT fstraneo ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT ssun ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT ldtrusel ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT jvanbreedam ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rswvandewal ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rswvandewal ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rwinkelmann ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT rwinkelmann ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT czhao ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT tzhang ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
AT tzwinger ismip6antarcticaamultimodelensembleoftheantarcticicesheetevolutionoverthe21stcentury
_version_ 1724544775963541504
spelling doaj-2e30e29db70c4a43b7f755af333da47b2020-11-25T03:37:38ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242020-09-01143033307010.5194/tc-14-3033-2020ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st centuryH. Seroussi0S. Nowicki1A. J. Payne2H. Goelzer3H. Goelzer4W. H. Lipscomb5A. Abe-Ouchi6C. Agosta7T. Albrecht8X. Asay-Davis9A. Barthel10R. Calov11R. Cullather12C. Dumas13B. K. Galton-Fenzi14R. Gladstone15N. R. Golledge16J. M. Gregory17J. M. Gregory18R. Greve19R. Greve20T. Hattermann21T. Hattermann22M. J. Hoffman23A. Humbert24A. Humbert25P. Huybrechts26N. C. Jourdain27T. Kleiner28E. Larour29G. R. Leguy30D. P. Lowry31C. M. Little32M. Morlighem33F. Pattyn34T. Pelle35S. F. Price36A. Quiquet37R. Reese38N.-J. Schlegel39A. Shepherd40E. Simon41R. S. Smith42F. Straneo43S. Sun44L. D. Trusel45J. Van Breedam46R. S. W. van de Wal47R. S. W. van de Wal48R. Winkelmann49R. Winkelmann50C. Zhao51T. Zhang52T. Zwinger53Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USANASA Goddard Space Flight Center, Greenbelt, MD, USAUniversity of Bristol, Bristol, UKInstitute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the NetherlandsLaboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, BelgiumClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USAUniversity of Tokyo, Tokyo, JapanLaboratoire des sciences du climat et de l'environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, FrancePotsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 601203, 14412 Potsdam, GermanyTheoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USATheoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USAPotsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 601203, 14412 Potsdam, GermanyNASA Goddard Space Flight Center, Greenbelt, MD, USALaboratoire des sciences du climat et de l'environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, FranceAustralian Antarctic Division, Kingston, Tasmania, AustraliaArctic Centre, University of Lapland, Rovaniemi, FinlandAntarctic Research Centre, Victoria University of Wellington, Wellington, New ZealandNational Centre for Atmospheric Science, University of Reading, Reading, UKMet Office Hadley Centre, Exeter, UKInstitute of Low Temperature Science, Hokkaido University, Sapporo, JapanArctic Research Center, Hokkaido University, Sapporo, JapanNorwegian Polar Institute, Tromsø, NorwayEnergy and Climate Group, Department of Physics and Technology, The Arctic University – University of Tromsø, Tromsø, NorwayTheoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USAAlfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, GermanyDepartment of Geoscience, University of Bremen, Klagenfurter Straße 2-4, 28334 Bremen, GermanyEarth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, BelgiumUniv. Grenoble Alpes/CNRS/IRD/G-INP, Institut des Géosciences de l'Environnement, Grenoble, FranceAlfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, GermanyJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USAGNS Science, Lower Hutt, New ZealandAtmospheric and Environmental Research, Inc., Lexington, MA, USADepartment of Earth System Science, University of California Irvine, Irvine, CA, USALaboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, BelgiumDepartment of Earth System Science, University of California Irvine, Irvine, CA, USATheoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USALaboratoire des sciences du climat et de l'environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, FrancePotsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 601203, 14412 Potsdam, GermanyJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USACentre for Polar Observation and Modelling, University of Leeds, Leeds, UKNASA Goddard Space Flight Center, Greenbelt, MD, USANational Centre for Atmospheric Science, University of Reading, Reading, UKScripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USALaboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, BelgiumDepartment of Geography, Pennsylvania State University, University Park, PA, USAEarth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, BelgiumInstitute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the NetherlandsGeosciences, Physical Geography, Utrecht University, Utrecht, the NetherlandsPotsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 601203, 14412 Potsdam, GermanyUniversity of Potsdam, Institute of Physics and Astronomy, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, GermanyInstitute for Marine and Antarctic Studies, University of Tasmania, Hobart, AustraliaTheoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USACSC-IT Center for Science, Espoo, Finland<p>Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between <span class="inline-formula">−7.8</span> and 30.0&thinsp;cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0&thinsp;cm&thinsp;SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between <span class="inline-formula">−6.1</span> and 8.3&thinsp;cm&thinsp;SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28&thinsp;mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3&thinsp;cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.</p>https://tc.copernicus.org/articles/14/3033/2020/tc-14-3033-2020.pdf