On Generalized Lucas Pseudoprimality of Level <i>k</i>

We investigate the Fibonacci pseudoprimes of level <i>k</i>, and we disprove a statement concerning the relationship between the sets of different levels, and also discuss a counterpart of this result for the Lucas pseudoprimes of level <i>k</i>. We then use some recent arith...

Full description

Bibliographic Details
Main Authors: Dorin Andrica, Ovidiu Bagdasar
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/8/838
Description
Summary:We investigate the Fibonacci pseudoprimes of level <i>k</i>, and we disprove a statement concerning the relationship between the sets of different levels, and also discuss a counterpart of this result for the Lucas pseudoprimes of level <i>k</i>. We then use some recent arithmetic properties of the generalized Lucas, and generalized Pell–Lucas sequences, to define some new types of pseudoprimes of levels <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>k</mi><mo>+</mo></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>k</mi><mo>−</mo></msup></semantics></math></inline-formula> and parameter <i>a</i>. For these novel pseudoprime sequences we investigate some basic properties and calculate numerous associated integer sequences which we have added to the Online Encyclopedia of Integer Sequences.
ISSN:2227-7390