Summary: | We investigate the Fibonacci pseudoprimes of level <i>k</i>, and we disprove a statement concerning the relationship between the sets of different levels, and also discuss a counterpart of this result for the Lucas pseudoprimes of level <i>k</i>. We then use some recent arithmetic properties of the generalized Lucas, and generalized Pell–Lucas sequences, to define some new types of pseudoprimes of levels <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>k</mi><mo>+</mo></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>k</mi><mo>−</mo></msup></semantics></math></inline-formula> and parameter <i>a</i>. For these novel pseudoprime sequences we investigate some basic properties and calculate numerous associated integer sequences which we have added to the Online Encyclopedia of Integer Sequences.
|