Poly(ADP-Ribose) Links the DNA Damage Response and Biomineralization

Summary: Biomineralization of the extracellular matrix is an essential, regulated process. Inappropriate mineralization of bone and the vasculature has devastating effects on patient health, yet an integrated understanding of the chemical and cell biological processes that lead to mineral nucleation...

Full description

Bibliographic Details
Main Authors: Karin H. Müller, Robert Hayward, Rakesh Rajan, Meredith Whitehead, Andrew M. Cobb, Sadia Ahmad, Mengxi Sun, Ieva Goldberga, Rui Li, Uliana Bashtanova, Anna M. Puszkarska, David G. Reid, Roger A. Brooks, Jeremy N. Skepper, Jayanta Bordoloi, Wing Ying Chow, Hartmut Oschkinat, Alex Groombridge, Oren A. Scherman, James A. Harrison, Anja Verhulst, Patrick C. D’Haese, Ellen Neven, Lisa-Maria Needham, Steven F. Lee, Catherine M. Shanahan, Melinda J. Duer
Format: Article
Language:English
Published: Elsevier 2019-06-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124719306588
id doaj-2e647e91d7844530b22e541687279a3e
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Karin H. Müller
Robert Hayward
Rakesh Rajan
Meredith Whitehead
Andrew M. Cobb
Sadia Ahmad
Mengxi Sun
Ieva Goldberga
Rui Li
Uliana Bashtanova
Anna M. Puszkarska
David G. Reid
Roger A. Brooks
Jeremy N. Skepper
Jayanta Bordoloi
Wing Ying Chow
Hartmut Oschkinat
Alex Groombridge
Oren A. Scherman
James A. Harrison
Anja Verhulst
Patrick C. D’Haese
Ellen Neven
Lisa-Maria Needham
Steven F. Lee
Catherine M. Shanahan
Melinda J. Duer
spellingShingle Karin H. Müller
Robert Hayward
Rakesh Rajan
Meredith Whitehead
Andrew M. Cobb
Sadia Ahmad
Mengxi Sun
Ieva Goldberga
Rui Li
Uliana Bashtanova
Anna M. Puszkarska
David G. Reid
Roger A. Brooks
Jeremy N. Skepper
Jayanta Bordoloi
Wing Ying Chow
Hartmut Oschkinat
Alex Groombridge
Oren A. Scherman
James A. Harrison
Anja Verhulst
Patrick C. D’Haese
Ellen Neven
Lisa-Maria Needham
Steven F. Lee
Catherine M. Shanahan
Melinda J. Duer
Poly(ADP-Ribose) Links the DNA Damage Response and Biomineralization
Cell Reports
author_facet Karin H. Müller
Robert Hayward
Rakesh Rajan
Meredith Whitehead
Andrew M. Cobb
Sadia Ahmad
Mengxi Sun
Ieva Goldberga
Rui Li
Uliana Bashtanova
Anna M. Puszkarska
David G. Reid
Roger A. Brooks
Jeremy N. Skepper
Jayanta Bordoloi
Wing Ying Chow
Hartmut Oschkinat
Alex Groombridge
Oren A. Scherman
James A. Harrison
Anja Verhulst
Patrick C. D’Haese
Ellen Neven
Lisa-Maria Needham
Steven F. Lee
Catherine M. Shanahan
Melinda J. Duer
author_sort Karin H. Müller
title Poly(ADP-Ribose) Links the DNA Damage Response and Biomineralization
title_short Poly(ADP-Ribose) Links the DNA Damage Response and Biomineralization
title_full Poly(ADP-Ribose) Links the DNA Damage Response and Biomineralization
title_fullStr Poly(ADP-Ribose) Links the DNA Damage Response and Biomineralization
title_full_unstemmed Poly(ADP-Ribose) Links the DNA Damage Response and Biomineralization
title_sort poly(adp-ribose) links the dna damage response and biomineralization
publisher Elsevier
series Cell Reports
issn 2211-1247
publishDate 2019-06-01
description Summary: Biomineralization of the extracellular matrix is an essential, regulated process. Inappropriate mineralization of bone and the vasculature has devastating effects on patient health, yet an integrated understanding of the chemical and cell biological processes that lead to mineral nucleation remains elusive. Here, we report that biomineralization of bone and the vasculature is associated with extracellular poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerases in response to oxidative and/or DNA damage. We use ultrastructural methods to show poly(ADP-ribose) can form both calcified spherical particles, reminiscent of those found in vascular calcification, and biomimetically calcified collagen fibrils similar to bone. Importantly, inhibition of poly(ADP-ribose) biosynthesis in vitro and in vivo inhibits biomineralization, suggesting a therapeutic route for the treatment of vascular calcifications. We conclude that poly(ADP-ribose) plays a central chemical role in both pathological and physiological extracellular matrix calcification. : Müller et al. investigate the physicochemical process of extracellular matrix calcification in both physiological (bone) and pathological (vascular calcification) contexts. They find that oxidative stress-induced poly(ADP-ribose) nucleates calcium phosphate mineral crystals on extracellular matrix substrates and that calcification is inhibited by poly(ADP-ribose) polymerase (PARP) enzyme inhibitors. Keywords: poly(ADP-ribose), vascular smooth muscle cell, bone, DNA damage
url http://www.sciencedirect.com/science/article/pii/S2211124719306588
work_keys_str_mv AT karinhmuller polyadpriboselinksthednadamageresponseandbiomineralization
AT roberthayward polyadpriboselinksthednadamageresponseandbiomineralization
AT rakeshrajan polyadpriboselinksthednadamageresponseandbiomineralization
AT meredithwhitehead polyadpriboselinksthednadamageresponseandbiomineralization
AT andrewmcobb polyadpriboselinksthednadamageresponseandbiomineralization
AT sadiaahmad polyadpriboselinksthednadamageresponseandbiomineralization
AT mengxisun polyadpriboselinksthednadamageresponseandbiomineralization
AT ievagoldberga polyadpriboselinksthednadamageresponseandbiomineralization
AT ruili polyadpriboselinksthednadamageresponseandbiomineralization
AT ulianabashtanova polyadpriboselinksthednadamageresponseandbiomineralization
AT annampuszkarska polyadpriboselinksthednadamageresponseandbiomineralization
AT davidgreid polyadpriboselinksthednadamageresponseandbiomineralization
AT rogerabrooks polyadpriboselinksthednadamageresponseandbiomineralization
AT jeremynskepper polyadpriboselinksthednadamageresponseandbiomineralization
AT jayantabordoloi polyadpriboselinksthednadamageresponseandbiomineralization
AT wingyingchow polyadpriboselinksthednadamageresponseandbiomineralization
AT hartmutoschkinat polyadpriboselinksthednadamageresponseandbiomineralization
AT alexgroombridge polyadpriboselinksthednadamageresponseandbiomineralization
AT orenascherman polyadpriboselinksthednadamageresponseandbiomineralization
AT jamesaharrison polyadpriboselinksthednadamageresponseandbiomineralization
AT anjaverhulst polyadpriboselinksthednadamageresponseandbiomineralization
AT patrickcdhaese polyadpriboselinksthednadamageresponseandbiomineralization
AT ellenneven polyadpriboselinksthednadamageresponseandbiomineralization
AT lisamarianeedham polyadpriboselinksthednadamageresponseandbiomineralization
AT stevenflee polyadpriboselinksthednadamageresponseandbiomineralization
AT catherinemshanahan polyadpriboselinksthednadamageresponseandbiomineralization
AT melindajduer polyadpriboselinksthednadamageresponseandbiomineralization
_version_ 1724760091096252416
spelling doaj-2e647e91d7844530b22e541687279a3e2020-11-25T02:45:48ZengElsevierCell Reports2211-12472019-06-01271131243138.e13Poly(ADP-Ribose) Links the DNA Damage Response and BiomineralizationKarin H. Müller0Robert Hayward1Rakesh Rajan2Meredith Whitehead3Andrew M. Cobb4Sadia Ahmad5Mengxi Sun6Ieva Goldberga7Rui Li8Uliana Bashtanova9Anna M. Puszkarska10David G. Reid11Roger A. Brooks12Jeremy N. Skepper13Jayanta Bordoloi14Wing Ying Chow15Hartmut Oschkinat16Alex Groombridge17Oren A. Scherman18James A. Harrison19Anja Verhulst20Patrick C. D’Haese21Ellen Neven22Lisa-Maria Needham23Steven F. Lee24Catherine M. Shanahan25Melinda J. Duer26Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKBHF Centre of Research Excellence, Cardiovascular Division, James Black Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UKDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKBHF Centre of Research Excellence, Cardiovascular Division, James Black Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UKBHF Centre of Research Excellence, Cardiovascular Division, James Black Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UKBHF Centre of Research Excellence, Cardiovascular Division, James Black Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UKBHF Centre of Research Excellence, Cardiovascular Division, James Black Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UKDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKDivision of Trauma and Orthopaedic Surgery, University of Cambridge, Box 180, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UKCambridge Advanced Imaging Centre, Department of Physiology, Development and Neurobiology, Downing Site, Tennis Court Road, Cambridge CB2 3DY, UKBHF Centre of Research Excellence, Cardiovascular Division, James Black Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UKLeibniz Forschungsinstitut für Molekulare Pharmakologie (FMP) im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Robert-Roessle-Str 10, 13125 Berlin, GermanyLeibniz Forschungsinstitut für Molekulare Pharmakologie (FMP) im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Robert-Roessle-Str 10, 13125 Berlin, GermanyMelville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKMelville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKCycle Pharmaceuticals Ltd, Bailey Grundy Barrett Building, Little St. Mary’s Lane, Cambridge CB2 1RR, UKLaboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, BelgiumLaboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, BelgiumLaboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, BelgiumDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UKBHF Centre of Research Excellence, Cardiovascular Division, James Black Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK; Corresponding authorDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Corresponding authorSummary: Biomineralization of the extracellular matrix is an essential, regulated process. Inappropriate mineralization of bone and the vasculature has devastating effects on patient health, yet an integrated understanding of the chemical and cell biological processes that lead to mineral nucleation remains elusive. Here, we report that biomineralization of bone and the vasculature is associated with extracellular poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerases in response to oxidative and/or DNA damage. We use ultrastructural methods to show poly(ADP-ribose) can form both calcified spherical particles, reminiscent of those found in vascular calcification, and biomimetically calcified collagen fibrils similar to bone. Importantly, inhibition of poly(ADP-ribose) biosynthesis in vitro and in vivo inhibits biomineralization, suggesting a therapeutic route for the treatment of vascular calcifications. We conclude that poly(ADP-ribose) plays a central chemical role in both pathological and physiological extracellular matrix calcification. : Müller et al. investigate the physicochemical process of extracellular matrix calcification in both physiological (bone) and pathological (vascular calcification) contexts. They find that oxidative stress-induced poly(ADP-ribose) nucleates calcium phosphate mineral crystals on extracellular matrix substrates and that calcification is inhibited by poly(ADP-ribose) polymerase (PARP) enzyme inhibitors. Keywords: poly(ADP-ribose), vascular smooth muscle cell, bone, DNA damagehttp://www.sciencedirect.com/science/article/pii/S2211124719306588