Identification of the Olfactory Profile of Rapeseed Oil as a Function of Heating Time and Ratio of Volume and Surface Area of Contact with Oxygen Using an Electronic Nose

The process of deep fat frying is the most common technological procedure applied to rapeseed oil. During heat treatment, oil loses its nutritional properties and its original consumer quality is lowered, which is often impossible to determine by organoleptic assessment. Therefore, the aim of the st...

Full description

Bibliographic Details
Main Authors: Robert Rusinek, Dominik Kmiecik, Marzena Gawrysiak-Witulska, Urszula Malaga-Tobola, Sylwester Tabor, Pavol Findura, Aleksander Siger, Marek Gancarz
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/1/303
Description
Summary:The process of deep fat frying is the most common technological procedure applied to rapeseed oil. During heat treatment, oil loses its nutritional properties and its original consumer quality is lowered, which is often impossible to determine by organoleptic assessment. Therefore, the aim of the study was to correlate markers of the loss of the nutritional properties by rapeseed oil related to the frying time and the surface area of contact with oxygen with changes in the profile of volatile compounds. The investigations involved the process of 6-, 12-, and 18-h heating of oil with a surface-to-volume ratio (s/v ratio) of 0.378 cm<sup>−1</sup>, 0.189 cm<sup>−1</sup>, and 0.126 cm<sup>−1</sup>. Samples were analysed to determine changes in the content of polar compounds, colour, fatty acid composition, iodine value, and total chromanol content. The results were correlated with the emission of volatile compounds determined using gas chromatography and an electronic nose. The results clearly show a positive correlation between the qualitative degradation of the oil induced by prolonged heating and the response of the electronic nose to these changes. The three volumes, the maximum reaction of the metal oxide semiconductor chemoresistors, and the content of polar compounds increased along the extended frying time.
ISSN:1424-8220