A Lightweight Dense Connected Approach with Attention on Single Image Super-Resolution

In recent years, neural networks for single image super-resolution (SISR) have applied more profound and deeper network structures to extract extra image details, which brings difficulties in model training. To deal with deep model training problems, researchers utilize dense skip connections to pro...

Full description

Bibliographic Details
Main Authors: Lei Zha, Yu Yang, Zicheng Lai, Ziwei Zhang, Juan Wen
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/11/1234
Description
Summary:In recent years, neural networks for single image super-resolution (SISR) have applied more profound and deeper network structures to extract extra image details, which brings difficulties in model training. To deal with deep model training problems, researchers utilize dense skip connections to promote the model’s feature representation ability by reusing deep features of different receptive fields. Benefiting from the dense connection block, SRDensenet has achieved excellent performance in SISR. Despite the fact that the dense connected structure can provide rich information, it will also introduce redundant and useless information. To tackle this problem, in this paper, we propose a Lightweight Dense Connected Approach with Attention for Single Image Super-Resolution (LDCASR), which employs the attention mechanism to extract useful information in channel dimension. Particularly, we propose the recursive dense group (RDG), consisting of Dense Attention Blocks (DABs), which can obtain more significant representations by extracting deep features with the aid of both dense connections and the attention module, making our whole network attach importance to learning more advanced feature information. Additionally, we introduce the group convolution in DABs, which can reduce the number of parameters to 0.6 M. Extensive experiments on benchmark datasets demonstrate the superiority of our proposed method over five chosen SISR methods.
ISSN:2079-9292