Bioelectronics for Millimeter-Sized Model Organisms

Advances in microfabrication technologies and biomaterials have enabled a growing class of electronic devices that can stimulate and record bioelectronic signals. Many of these devices have been developed for humans or vertebrate animals, where miniaturization allows for implantation within the body...

Full description

Bibliographic Details
Main Authors: Daniel L. Gonzales, Krishna N. Badhiwala, Benjamin W. Avants, Jacob T. Robinson
Format: Article
Language:English
Published: Elsevier 2020-03-01
Series:iScience
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004220301012
Description
Summary:Advances in microfabrication technologies and biomaterials have enabled a growing class of electronic devices that can stimulate and record bioelectronic signals. Many of these devices have been developed for humans or vertebrate animals, where miniaturization allows for implantation within the body. There are, however, another class of bioelectronic interfaces that exploit microfabrication and nanoelectronics to record signals from tiny, millimeter-sized organisms. In these cases, rather than implanting a device inside an animal, animals themselves are loaded in large numbers into bioelectronic devices for neural circuit and behavioral interrogation. These scalable interfaces provide platforms to develop new therapeutics as well as better understand basic principles of bioelectronic communication, neuroscience, and behavior. Here we review recent progress in these bioelectronic technologies and describe how they can complement on-chip optical, mechanical, and chemical interrogation methods to achieve high-throughput, multimodal studies of millimeter-sized small animals. : Bioelectronics; Electronic Materials; Systems Neuroscience; Techniques in Neuroscience Subject Areas: Bioelectronics, Electronic Materials, Systems Neuroscience, Techniques in Neuroscience
ISSN:2589-0042