THERMODYNAMICS OF PEPTIDE-MHC CLASS II INTERACTIONS: NOT ALL COMPLEXES ARE CREATED EQUAL

The adaptive immune response begins when CD4+ T cells recognize antigenic peptides bound to class II molecules of the Major Histocompatibility Complex (MHCII). The interaction between peptides and MHCII has been historically interpreted as a rigid docking event. However, this model has been challeng...

Full description

Bibliographic Details
Main Author: Andrea eFerrante
Format: Article
Language:English
Published: Frontiers Media S.A. 2013-10-01
Series:Frontiers in Immunology
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fimmu.2013.00308/full
Description
Summary:The adaptive immune response begins when CD4+ T cells recognize antigenic peptides bound to class II molecules of the Major Histocompatibility Complex (MHCII). The interaction between peptides and MHCII has been historically interpreted as a rigid docking event. However, this model has been challenged by the evidence that conformational flexibility plays an important role in peptide-MHCII complex formation. Thermodynamic analysis of the binding reaction suggests a model of complexation in which the physical-chemical nature of the peptide determines the variability in flexibility of the substates in the peptide-MHC conformational ensemble. This review discusses our understanding of the correlation between thermodynamics of peptide binding and structural features of the resulting complex as well as their impact on HLA-DM activity and on our ability to predict MHCII-restricted epitopes.
ISSN:1664-3224