Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates
In this review, we provide a survey of the application of advanced first-principle methods on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties of the spin-orbit coupled Ruddlesden–Popper series of iridates Sr<inline-formula><math xmlns="h...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/6/2527 |
id |
doaj-3056d3caa1734823931c80fa1de7ec8c |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Peitao Liu Cesare Franchini |
spellingShingle |
Peitao Liu Cesare Franchini Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates Applied Sciences iridates first-principle methods computational modeling spin-orbit coupling correlated materials metal-insulator transition |
author_facet |
Peitao Liu Cesare Franchini |
author_sort |
Peitao Liu |
title |
Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates |
title_short |
Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates |
title_full |
Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates |
title_fullStr |
Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates |
title_full_unstemmed |
Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates |
title_sort |
advanced first-principle modeling of relativistic ruddlesden—popper strontium iridates |
publisher |
MDPI AG |
series |
Applied Sciences |
issn |
2076-3417 |
publishDate |
2021-03-01 |
description |
In this review, we provide a survey of the application of advanced first-principle methods on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties of the spin-orbit coupled Ruddlesden–Popper series of iridates Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>n</mi></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> (<i>n</i> = 1, 2, and <i>∞</i>). After a brief description of the basic aspects of the adopted methods (noncollinear local spin density approximation plus an on-site Coulomb interaction (LSDA+<i>U</i>), constrained random phase approximation (cRPA), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula>, and Bethe–Salpeter equation (BSE)), we present and discuss select results. We show that a detailed phase diagrams of the metal–insulator transition and magnetic phase transition can be constructed by inspecting the evolution of electronic and magnetic properties as a function of Hubbard <i>U</i>, spin–orbit coupling (SOC) strength, and dimensionality <i>n</i>, which provide clear evidence for the crucial role played by SOC and <i>U</i> in establishing a relativistic (Dirac) Mott–Hubbard insulating state in Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>IrO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>. To characterize the ground-state phases, we quantify the most relevant energy scales fully ab initio—crystal field energy, Hubbard <i>U</i>, and SOC constant of three compounds—and discuss the quasiparticle band structures in detail by comparing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula> and LSDA+<i>U</i> data. We examine the different magnetic ground states of structurally similar <i>n</i> = 1 and <i>n</i> = 2 compounds and clarify that the origin of the in-plane canted antiferromagnetic (AFM) state of Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>IrO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> arises from competition between isotropic exchange and Dzyaloshinskii–Moriya (DM) interactions whereas the collinear AFM state of Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> is due to strong interlayer magnetic coupling. Finally, we report the dimensionality controlled metal–insulator transition across the series by computing their optical transitions and conductivity spectra at the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula>+BSE level from the the quasi two-dimensional insulating <i>n</i> = 1 and 2 phases to the three-dimensional metallic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mspace width="3.33333pt"></mspace><mo>=</mo><mspace width="3.33333pt"></mspace><mi>∞</mi></mrow></semantics></math></inline-formula> phase. |
topic |
iridates first-principle methods computational modeling spin-orbit coupling correlated materials metal-insulator transition |
url |
https://www.mdpi.com/2076-3417/11/6/2527 |
work_keys_str_mv |
AT peitaoliu advancedfirstprinciplemodelingofrelativisticruddlesdenpopperstrontiumiridates AT cesarefranchini advancedfirstprinciplemodelingofrelativisticruddlesdenpopperstrontiumiridates |
_version_ |
1724223250363318272 |
spelling |
doaj-3056d3caa1734823931c80fa1de7ec8c2021-03-12T00:06:29ZengMDPI AGApplied Sciences2076-34172021-03-01112527252710.3390/app11062527Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium IridatesPeitao Liu0Cesare Franchini1Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8, A-1090 Vienna, AustriaFaculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8, A-1090 Vienna, AustriaIn this review, we provide a survey of the application of advanced first-principle methods on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties of the spin-orbit coupled Ruddlesden–Popper series of iridates Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>n</mi></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> (<i>n</i> = 1, 2, and <i>∞</i>). After a brief description of the basic aspects of the adopted methods (noncollinear local spin density approximation plus an on-site Coulomb interaction (LSDA+<i>U</i>), constrained random phase approximation (cRPA), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula>, and Bethe–Salpeter equation (BSE)), we present and discuss select results. We show that a detailed phase diagrams of the metal–insulator transition and magnetic phase transition can be constructed by inspecting the evolution of electronic and magnetic properties as a function of Hubbard <i>U</i>, spin–orbit coupling (SOC) strength, and dimensionality <i>n</i>, which provide clear evidence for the crucial role played by SOC and <i>U</i> in establishing a relativistic (Dirac) Mott–Hubbard insulating state in Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>IrO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>. To characterize the ground-state phases, we quantify the most relevant energy scales fully ab initio—crystal field energy, Hubbard <i>U</i>, and SOC constant of three compounds—and discuss the quasiparticle band structures in detail by comparing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula> and LSDA+<i>U</i> data. We examine the different magnetic ground states of structurally similar <i>n</i> = 1 and <i>n</i> = 2 compounds and clarify that the origin of the in-plane canted antiferromagnetic (AFM) state of Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>IrO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> arises from competition between isotropic exchange and Dzyaloshinskii–Moriya (DM) interactions whereas the collinear AFM state of Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> is due to strong interlayer magnetic coupling. Finally, we report the dimensionality controlled metal–insulator transition across the series by computing their optical transitions and conductivity spectra at the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula>+BSE level from the the quasi two-dimensional insulating <i>n</i> = 1 and 2 phases to the three-dimensional metallic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mspace width="3.33333pt"></mspace><mo>=</mo><mspace width="3.33333pt"></mspace><mi>∞</mi></mrow></semantics></math></inline-formula> phase.https://www.mdpi.com/2076-3417/11/6/2527iridatesfirst-principle methodscomputational modelingspin-orbit couplingcorrelated materialsmetal-insulator transition |