Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates

In this review, we provide a survey of the application of advanced first-principle methods on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties of the spin-orbit coupled Ruddlesden–Popper series of iridates Sr<inline-formula><math xmlns="h...

Full description

Bibliographic Details
Main Authors: Peitao Liu, Cesare Franchini
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/6/2527
id doaj-3056d3caa1734823931c80fa1de7ec8c
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Peitao Liu
Cesare Franchini
spellingShingle Peitao Liu
Cesare Franchini
Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates
Applied Sciences
iridates
first-principle methods
computational modeling
spin-orbit coupling
correlated materials
metal-insulator transition
author_facet Peitao Liu
Cesare Franchini
author_sort Peitao Liu
title Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates
title_short Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates
title_full Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates
title_fullStr Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates
title_full_unstemmed Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates
title_sort advanced first-principle modeling of relativistic ruddlesden—popper strontium iridates
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2021-03-01
description In this review, we provide a survey of the application of advanced first-principle methods on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties of the spin-orbit coupled Ruddlesden–Popper series of iridates Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>n</mi></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> (<i>n</i> = 1, 2, and <i>∞</i>). After a brief description of the basic aspects of the adopted methods (noncollinear local spin density approximation plus an on-site Coulomb interaction (LSDA+<i>U</i>), constrained random phase approximation (cRPA), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula>, and Bethe–Salpeter equation (BSE)), we present and discuss select results. We show that a detailed phase diagrams of the metal–insulator transition and magnetic phase transition can be constructed by inspecting the evolution of electronic and magnetic properties as a function of Hubbard <i>U</i>, spin–orbit coupling (SOC) strength, and dimensionality <i>n</i>, which provide clear evidence for the crucial role played by SOC and <i>U</i> in establishing a relativistic (Dirac) Mott–Hubbard insulating state in Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>IrO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>. To characterize the ground-state phases, we quantify the most relevant energy scales fully ab initio—crystal field energy, Hubbard <i>U</i>, and SOC constant of three compounds—and discuss the quasiparticle band structures in detail by comparing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula> and LSDA+<i>U</i> data. We examine the different magnetic ground states of structurally similar <i>n</i> = 1 and <i>n</i> = 2 compounds and clarify that the origin of the in-plane canted antiferromagnetic (AFM) state of Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>IrO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> arises from competition between isotropic exchange and Dzyaloshinskii–Moriya (DM) interactions whereas the collinear AFM state of Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> is due to strong interlayer magnetic coupling. Finally, we report the dimensionality controlled metal–insulator transition across the series by computing their optical transitions and conductivity spectra at the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula>+BSE level from the the quasi two-dimensional insulating <i>n</i> = 1 and 2 phases to the three-dimensional metallic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mspace width="3.33333pt"></mspace><mo>=</mo><mspace width="3.33333pt"></mspace><mi>∞</mi></mrow></semantics></math></inline-formula> phase.
topic iridates
first-principle methods
computational modeling
spin-orbit coupling
correlated materials
metal-insulator transition
url https://www.mdpi.com/2076-3417/11/6/2527
work_keys_str_mv AT peitaoliu advancedfirstprinciplemodelingofrelativisticruddlesdenpopperstrontiumiridates
AT cesarefranchini advancedfirstprinciplemodelingofrelativisticruddlesdenpopperstrontiumiridates
_version_ 1724223250363318272
spelling doaj-3056d3caa1734823931c80fa1de7ec8c2021-03-12T00:06:29ZengMDPI AGApplied Sciences2076-34172021-03-01112527252710.3390/app11062527Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium IridatesPeitao Liu0Cesare Franchini1Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8, A-1090 Vienna, AustriaFaculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8, A-1090 Vienna, AustriaIn this review, we provide a survey of the application of advanced first-principle methods on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties of the spin-orbit coupled Ruddlesden–Popper series of iridates Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>n</mi></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> (<i>n</i> = 1, 2, and <i>∞</i>). After a brief description of the basic aspects of the adopted methods (noncollinear local spin density approximation plus an on-site Coulomb interaction (LSDA+<i>U</i>), constrained random phase approximation (cRPA), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula>, and Bethe–Salpeter equation (BSE)), we present and discuss select results. We show that a detailed phase diagrams of the metal–insulator transition and magnetic phase transition can be constructed by inspecting the evolution of electronic and magnetic properties as a function of Hubbard <i>U</i>, spin–orbit coupling (SOC) strength, and dimensionality <i>n</i>, which provide clear evidence for the crucial role played by SOC and <i>U</i> in establishing a relativistic (Dirac) Mott–Hubbard insulating state in Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>IrO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>. To characterize the ground-state phases, we quantify the most relevant energy scales fully ab initio—crystal field energy, Hubbard <i>U</i>, and SOC constant of three compounds—and discuss the quasiparticle band structures in detail by comparing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula> and LSDA+<i>U</i> data. We examine the different magnetic ground states of structurally similar <i>n</i> = 1 and <i>n</i> = 2 compounds and clarify that the origin of the in-plane canted antiferromagnetic (AFM) state of Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>IrO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> arises from competition between isotropic exchange and Dzyaloshinskii–Moriya (DM) interactions whereas the collinear AFM state of Sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>Ir<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula> is due to strong interlayer magnetic coupling. Finally, we report the dimensionality controlled metal–insulator transition across the series by computing their optical transitions and conductivity spectra at the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>W</mi></mrow></semantics></math></inline-formula>+BSE level from the the quasi two-dimensional insulating <i>n</i> = 1 and 2 phases to the three-dimensional metallic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mspace width="3.33333pt"></mspace><mo>=</mo><mspace width="3.33333pt"></mspace><mi>∞</mi></mrow></semantics></math></inline-formula> phase.https://www.mdpi.com/2076-3417/11/6/2527iridatesfirst-principle methodscomputational modelingspin-orbit couplingcorrelated materialsmetal-insulator transition