Redox Regulation of Starch Metabolism
Metabolism of starch is a major biological integrator of plant growth supporting nocturnal energy dynamics by transitory starch degradation as well as periods of dormancy, re-growth, and reproduction by utilization of storage starch. Especially, the extraordinarily well-tuned and coordinated rate of...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-09-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fpls.2018.01344/full |
id |
doaj-3072b96650ab48e48cc83dba5323d020 |
---|---|
record_format |
Article |
spelling |
doaj-3072b96650ab48e48cc83dba5323d0202020-11-24T23:46:51ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2018-09-01910.3389/fpls.2018.01344410510Redox Regulation of Starch MetabolismKatsiaryna Skryhan0Libero Gurrieri1Francesca Sparla2Paolo Trost3Andreas Blennow4Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, DenmarkDepartment of Pharmacy and Biotechnology – FaBiT, University of Bologna, Bologna, ItalyDepartment of Pharmacy and Biotechnology – FaBiT, University of Bologna, Bologna, ItalyDepartment of Pharmacy and Biotechnology – FaBiT, University of Bologna, Bologna, ItalyDepartment of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, DenmarkMetabolism of starch is a major biological integrator of plant growth supporting nocturnal energy dynamics by transitory starch degradation as well as periods of dormancy, re-growth, and reproduction by utilization of storage starch. Especially, the extraordinarily well-tuned and coordinated rate of transient starch biosynthesis and degradation suggests the presence of very sophisticated regulatory mechanisms. Together with the circadian clock, land plants (being autotrophic and sessile organisms) need to monitor, sense, and recognize the photosynthetic rate, soil mineral availability as well as various abiotic and biotic stress factors. Currently it is widely accepted that post-translational modifications are the main way by which the diel periodic activity of enzymes of transient starch metabolism are regulated. Among these mechanisms, thiol-based redox regulation is suggested to be of fundamental importance and in chloroplasts, thioredoxins (Trx) are tightly linked up to photosynthesis and mediate light/dark regulation of metabolism. Also, light independent NADP-thioredoxin reductase C (NTRC) plays a major role in reactive oxygen species scavenging. Moreover, Trx and NTRC systems are interconnected at several levels and strongly influence each other. Most enzymes involved in starch metabolism are demonstrated to be redox-sensitive in vitro. However, to what extent their redox sensitivity is physiologically relevant in synchronizing starch metabolism with photosynthesis, heterotrophic energy demands, and oxidative protection is still unclear. For example, many hydrolases are activated under reducing (light) conditions and the strict separation between light and dark metabolic pathways is now challenged by data suggesting degradation of starch during the light period.https://www.frontiersin.org/article/10.3389/fpls.2018.01344/fullredox regulationstarchthioredoxinsNTRCdiurnal regulation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Katsiaryna Skryhan Libero Gurrieri Francesca Sparla Paolo Trost Andreas Blennow |
spellingShingle |
Katsiaryna Skryhan Libero Gurrieri Francesca Sparla Paolo Trost Andreas Blennow Redox Regulation of Starch Metabolism Frontiers in Plant Science redox regulation starch thioredoxins NTRC diurnal regulation |
author_facet |
Katsiaryna Skryhan Libero Gurrieri Francesca Sparla Paolo Trost Andreas Blennow |
author_sort |
Katsiaryna Skryhan |
title |
Redox Regulation of Starch Metabolism |
title_short |
Redox Regulation of Starch Metabolism |
title_full |
Redox Regulation of Starch Metabolism |
title_fullStr |
Redox Regulation of Starch Metabolism |
title_full_unstemmed |
Redox Regulation of Starch Metabolism |
title_sort |
redox regulation of starch metabolism |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Plant Science |
issn |
1664-462X |
publishDate |
2018-09-01 |
description |
Metabolism of starch is a major biological integrator of plant growth supporting nocturnal energy dynamics by transitory starch degradation as well as periods of dormancy, re-growth, and reproduction by utilization of storage starch. Especially, the extraordinarily well-tuned and coordinated rate of transient starch biosynthesis and degradation suggests the presence of very sophisticated regulatory mechanisms. Together with the circadian clock, land plants (being autotrophic and sessile organisms) need to monitor, sense, and recognize the photosynthetic rate, soil mineral availability as well as various abiotic and biotic stress factors. Currently it is widely accepted that post-translational modifications are the main way by which the diel periodic activity of enzymes of transient starch metabolism are regulated. Among these mechanisms, thiol-based redox regulation is suggested to be of fundamental importance and in chloroplasts, thioredoxins (Trx) are tightly linked up to photosynthesis and mediate light/dark regulation of metabolism. Also, light independent NADP-thioredoxin reductase C (NTRC) plays a major role in reactive oxygen species scavenging. Moreover, Trx and NTRC systems are interconnected at several levels and strongly influence each other. Most enzymes involved in starch metabolism are demonstrated to be redox-sensitive in vitro. However, to what extent their redox sensitivity is physiologically relevant in synchronizing starch metabolism with photosynthesis, heterotrophic energy demands, and oxidative protection is still unclear. For example, many hydrolases are activated under reducing (light) conditions and the strict separation between light and dark metabolic pathways is now challenged by data suggesting degradation of starch during the light period. |
topic |
redox regulation starch thioredoxins NTRC diurnal regulation |
url |
https://www.frontiersin.org/article/10.3389/fpls.2018.01344/full |
work_keys_str_mv |
AT katsiarynaskryhan redoxregulationofstarchmetabolism AT liberogurrieri redoxregulationofstarchmetabolism AT francescasparla redoxregulationofstarchmetabolism AT paolotrost redoxregulationofstarchmetabolism AT andreasblennow redoxregulationofstarchmetabolism |
_version_ |
1725492020043055104 |