Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan

In order to improve the accuracy of the wind speed simulated by a mesoscale model for the wind resource assessment in coastal areas, this study evaluated the effectiveness of using the Japan Meteorological Agency (JMA)’s latest and finest (2 km × 2 km) grid point value (GPV) data,...

Full description

Bibliographic Details
Main Authors: Takeshi Misaki, Teruo Ohsawa, Mizuki Konagaya, Susumu Shimada, Yuko Takeyama, Satoshi Nakamura
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Energies
Subjects:
WRF
Online Access:https://www.mdpi.com/1996-1073/12/14/2754
id doaj-3078a5a15a6747b6b2fb2f2a66441fb4
record_format Article
spelling doaj-3078a5a15a6747b6b2fb2f2a66441fb42020-11-24T21:30:45ZengMDPI AGEnergies1996-10732019-07-011214275410.3390/en12142754en12142754Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in JapanTakeshi Misaki0Teruo Ohsawa1Mizuki Konagaya2Susumu Shimada3Yuko Takeyama4Satoshi Nakamura5Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukae-minami, Higashinada-Ku, Kobe, Hyogo 658-0022, JapanGraduate School of Maritime Sciences, Kobe University, 5-1-1 Fukae-minami, Higashinada-Ku, Kobe, Hyogo 658-0022, JapanGraduate School of Maritime Sciences, Kobe University, 5-1-1 Fukae-minami, Higashinada-Ku, Kobe, Hyogo 658-0022, JapanNational Institute of Advanced Industrial Science and Technology, 2-2-9 Machiikedai, Koriyama, Fukushima 963-0298, JapanDepartment of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo 108-8477, JapanNational Institute of Maritime, Port and Aviation Technology, Port and Airport Research Institute, 3-1-1 Nagase, Yokosuka 239-0826, JapanIn order to improve the accuracy of the wind speed simulated by a mesoscale model for the wind resource assessment in coastal areas, this study evaluated the effectiveness of using the Japan Meteorological Agency (JMA)’s latest and finest (2 km × 2 km) grid point value (GPV) data, produced from the local forecast model (LFM) as input data to the mesoscale model. The evaluation was performed using wind lidar measurements at two sites located on the coasts of the Sea of Japan and Pacific Ocean. The accuracy of the LFM−GPV was first compared with that of two products from the JMA Meso Scale Model (MSM) (5 km × 5 km): MSM-GPV and mesoscale analysis (MANAL). Consequently, it was shown that LFM−GPV exhibited the most accurate wind speeds against lidar measurements. Next, dynamical downscaling simulations were performed using the weather research and forecasting model (WRF) forced by the three datasets above, and their results were compared. As compared to the GPVs, it was found that the WRF dynamical downscaling simulation using them as input can improve the accuracy of the coastal wind speeds. This was attributed to the advantage of the WRF simulation to improve the negative bias from the input data, especially for the winds blowing from the sea sectors. It was also found that even if the LFM−GPV is used as an input to the WRF simulation, it does not always reproduce more accurate wind speeds, as compared to the simulations using the other two datasets. This result is partly owing to the tendency of WRF to overestimate the wind speed over land, thus obscuring the higher accuracy of the LFM−GPV. It was also shown that the overestimation tendency cannot be improved by only changing the nudging methods or the planetary boundary layer schemes in WRF. These results indicate that it may be difficult to utilize the LFM−GPV in the WRF wind simulation, unless the overestimation tendency of WRF itself is improved first.https://www.mdpi.com/1996-1073/12/14/2754wind resource assessmentmeteorological mesoscale modeldynamical downscalingWRFgrid point valueplanetary boundary layer scheme
collection DOAJ
language English
format Article
sources DOAJ
author Takeshi Misaki
Teruo Ohsawa
Mizuki Konagaya
Susumu Shimada
Yuko Takeyama
Satoshi Nakamura
spellingShingle Takeshi Misaki
Teruo Ohsawa
Mizuki Konagaya
Susumu Shimada
Yuko Takeyama
Satoshi Nakamura
Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan
Energies
wind resource assessment
meteorological mesoscale model
dynamical downscaling
WRF
grid point value
planetary boundary layer scheme
author_facet Takeshi Misaki
Teruo Ohsawa
Mizuki Konagaya
Susumu Shimada
Yuko Takeyama
Satoshi Nakamura
author_sort Takeshi Misaki
title Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan
title_short Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan
title_full Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan
title_fullStr Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan
title_full_unstemmed Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan
title_sort accuracy comparison of coastal wind speeds between wrf simulations using different input datasets in japan
publisher MDPI AG
series Energies
issn 1996-1073
publishDate 2019-07-01
description In order to improve the accuracy of the wind speed simulated by a mesoscale model for the wind resource assessment in coastal areas, this study evaluated the effectiveness of using the Japan Meteorological Agency (JMA)’s latest and finest (2 km × 2 km) grid point value (GPV) data, produced from the local forecast model (LFM) as input data to the mesoscale model. The evaluation was performed using wind lidar measurements at two sites located on the coasts of the Sea of Japan and Pacific Ocean. The accuracy of the LFM−GPV was first compared with that of two products from the JMA Meso Scale Model (MSM) (5 km × 5 km): MSM-GPV and mesoscale analysis (MANAL). Consequently, it was shown that LFM−GPV exhibited the most accurate wind speeds against lidar measurements. Next, dynamical downscaling simulations were performed using the weather research and forecasting model (WRF) forced by the three datasets above, and their results were compared. As compared to the GPVs, it was found that the WRF dynamical downscaling simulation using them as input can improve the accuracy of the coastal wind speeds. This was attributed to the advantage of the WRF simulation to improve the negative bias from the input data, especially for the winds blowing from the sea sectors. It was also found that even if the LFM−GPV is used as an input to the WRF simulation, it does not always reproduce more accurate wind speeds, as compared to the simulations using the other two datasets. This result is partly owing to the tendency of WRF to overestimate the wind speed over land, thus obscuring the higher accuracy of the LFM−GPV. It was also shown that the overestimation tendency cannot be improved by only changing the nudging methods or the planetary boundary layer schemes in WRF. These results indicate that it may be difficult to utilize the LFM−GPV in the WRF wind simulation, unless the overestimation tendency of WRF itself is improved first.
topic wind resource assessment
meteorological mesoscale model
dynamical downscaling
WRF
grid point value
planetary boundary layer scheme
url https://www.mdpi.com/1996-1073/12/14/2754
work_keys_str_mv AT takeshimisaki accuracycomparisonofcoastalwindspeedsbetweenwrfsimulationsusingdifferentinputdatasetsinjapan
AT teruoohsawa accuracycomparisonofcoastalwindspeedsbetweenwrfsimulationsusingdifferentinputdatasetsinjapan
AT mizukikonagaya accuracycomparisonofcoastalwindspeedsbetweenwrfsimulationsusingdifferentinputdatasetsinjapan
AT susumushimada accuracycomparisonofcoastalwindspeedsbetweenwrfsimulationsusingdifferentinputdatasetsinjapan
AT yukotakeyama accuracycomparisonofcoastalwindspeedsbetweenwrfsimulationsusingdifferentinputdatasetsinjapan
AT satoshinakamura accuracycomparisonofcoastalwindspeedsbetweenwrfsimulationsusingdifferentinputdatasetsinjapan
_version_ 1725961851042267136