Effect of Water Deficit Stress on Peach Growth under Commercial Orchard Management Conditions
In order to study the sensitivity of vegetative growth to water deficit stress of a late-maturing peach (Prunus persica L. cv. Elberta) under orchard conditions, an experiment was conducted as randomized complete-block design with three treatments and four repetitions in Shahdiran commercial orchard...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Ferdowsi University of Mashhad
2015-06-01
|
Series: | مجله آب و خاک |
Subjects: | |
Online Access: | http://jsw.um.ac.ir/index.php/jsw/article/view/36033 |
Summary: | In order to study the sensitivity of vegetative growth to water deficit stress of a late-maturing peach (Prunus persica L. cv. Elberta) under orchard conditions, an experiment was conducted as randomized complete-block design with three treatments and four repetitions in Shahdiran commercial orchard in Mashhad during 2011. Three irrigation treatments including 360 (low stress), 180 (moderate stress) and 90 (severe stress) m3ha-1week-1 using a drip irrigation system (minimum stem water potential near harvest: -1.2, -1.5 and -1.7 MPa, respectively) from the mid-pit hardening stage (12th of June) until harvest (23rd of Sep.) applied. Predawn, stem and leaf water potentials, leaf photosynthesis, transpiration, stomatal conductance and leaf temperature, the number of new shoots on fruit bearing shoots and vegetative shoots lengths during growing season as well as leaf area at harvest were measured. The results showed that water deficit stress had negative effects on peach tree water status, thereby resulting in decreased leaf gas exchange and tree vegetative growth. As significant decreased assimilate production of tree was resulted from both decreased leaf assimilation rate (until about 23 % and 50 %, respectively under moderate and severe stress conditions compared to low stress conditions) and decreased leaf area of tree (until about 57% and 79%, respectively under moderate and severe stress conditions compared to low stress conditions at harvest). The significant positive correlation between leaf water potential and vegetative growth of peach revealed that shoot growth would decrease by 30% and 50% of maximum at leaf water potential of –1.56 and –2.30 MPa, respectively. |
---|---|
ISSN: | 2008-4757 2423-396X |