The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era
The European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hund...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2021-01-01
|
Series: | Journal of Space Weather and Space Climate |
Subjects: | |
Online Access: | https://www.swsc-journal.org/articles/swsc/full_html/2021/01/swsc200032/swsc200032.html |
id |
doaj-30ac247768104f16acced7f8204b51fc |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Georgoulis Manolis K. Bloomfield D. Shaun Piana Michele Massone Anna Maria Soldati Marco Gallagher Peter T. Pariat Etienne Vilmer Nicole Buchlin Eric Baudin Frederic Csillaghy Andre Sathiapal Hanna Jackson David R. Alingery Pablo Benvenuto Federico Campi Cristina Florios Konstantinos Gontikakis Constantinos Guennou Chloe Guerra Jordan A. Kontogiannis Ioannis Latorre Vittorio Murray Sophie A. Park Sung-Hong von Stachelski Samuel Torbica Aleksandar Vischi Dario Worsfold Mark |
spellingShingle |
Georgoulis Manolis K. Bloomfield D. Shaun Piana Michele Massone Anna Maria Soldati Marco Gallagher Peter T. Pariat Etienne Vilmer Nicole Buchlin Eric Baudin Frederic Csillaghy Andre Sathiapal Hanna Jackson David R. Alingery Pablo Benvenuto Federico Campi Cristina Florios Konstantinos Gontikakis Constantinos Guennou Chloe Guerra Jordan A. Kontogiannis Ioannis Latorre Vittorio Murray Sophie A. Park Sung-Hong von Stachelski Samuel Torbica Aleksandar Vischi Dario Worsfold Mark The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era Journal of Space Weather and Space Climate sun solar flares solar flare forecasting machine learning big data computer science |
author_facet |
Georgoulis Manolis K. Bloomfield D. Shaun Piana Michele Massone Anna Maria Soldati Marco Gallagher Peter T. Pariat Etienne Vilmer Nicole Buchlin Eric Baudin Frederic Csillaghy Andre Sathiapal Hanna Jackson David R. Alingery Pablo Benvenuto Federico Campi Cristina Florios Konstantinos Gontikakis Constantinos Guennou Chloe Guerra Jordan A. Kontogiannis Ioannis Latorre Vittorio Murray Sophie A. Park Sung-Hong von Stachelski Samuel Torbica Aleksandar Vischi Dario Worsfold Mark |
author_sort |
Georgoulis Manolis K. |
title |
The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era |
title_short |
The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era |
title_full |
The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era |
title_fullStr |
The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era |
title_full_unstemmed |
The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era |
title_sort |
flare likelihood and region eruption forecasting (flarecast) project: flare forecasting in the big data & machine learning era |
publisher |
EDP Sciences |
series |
Journal of Space Weather and Space Climate |
issn |
2115-7251 |
publishDate |
2021-01-01 |
description |
The European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of physical properties viewed as promising flare predictors on equal footing, extending multiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal footing, to optimize the immense Big Data parameter space created by these many predictors; third, the establishment of a robust, three-pronged communication effort oriented toward policy makers, space-weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infrastructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are now available) in multiple machine-learning algorithms, some of which were designed exclusively for the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition, the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejections (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare prediction thus remains inherently probabilistic. |
topic |
sun solar flares solar flare forecasting machine learning big data computer science |
url |
https://www.swsc-journal.org/articles/swsc/full_html/2021/01/swsc200032/swsc200032.html |
work_keys_str_mv |
AT georgoulismanolisk theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT bloomfielddshaun theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT pianamichele theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT massoneannamaria theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT soldatimarco theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT gallagherpetert theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT pariatetienne theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT vilmernicole theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT buchlineric theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT baudinfrederic theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT csillaghyandre theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT sathiapalhanna theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT jacksondavidr theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT alingerypablo theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT benvenutofederico theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT campicristina theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT florioskonstantinos theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT gontikakisconstantinos theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT guennouchloe theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT guerrajordana theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT kontogiannisioannis theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT latorrevittorio theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT murraysophiea theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT parksunghong theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT vonstachelskisamuel theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT torbicaaleksandar theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT vischidario theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT worsfoldmark theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT georgoulismanolisk flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT bloomfielddshaun flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT pianamichele flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT massoneannamaria flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT soldatimarco flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT gallagherpetert flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT pariatetienne flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT vilmernicole flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT buchlineric flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT baudinfrederic flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT csillaghyandre flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT sathiapalhanna flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT jacksondavidr flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT alingerypablo flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT benvenutofederico flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT campicristina flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT florioskonstantinos flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT gontikakisconstantinos flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT guennouchloe flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT guerrajordana flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT kontogiannisioannis flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT latorrevittorio flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT murraysophiea flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT parksunghong flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT vonstachelskisamuel flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT torbicaaleksandar flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT vischidario flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera AT worsfoldmark flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera |
_version_ |
1721211383264051200 |
spelling |
doaj-30ac247768104f16acced7f8204b51fc2021-08-11T12:30:01ZengEDP SciencesJournal of Space Weather and Space Climate2115-72512021-01-01113910.1051/swsc/2021023swsc200032The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning eraGeorgoulis Manolis K.0https://orcid.org/0000-0001-6913-1330Bloomfield D. Shaunhttps://orcid.org/0000-0002-4183-9895Piana Michelehttps://orcid.org/0000-0003-1700-991XMassone Anna Mariahttps://orcid.org/0000-0003-4966-8864Soldati Marco1https://orcid.org/0000-0001-7043-286XGallagher Peter T.https://orcid.org/0000-0001-9745-0400Pariat Etienne2https://orcid.org/0000-0002-2900-0608Vilmer Nicole3Buchlin Eric4https://orcid.org/0000-0003-4290-1897Baudin Frederic5Csillaghy Andre6Sathiapal Hanna7Jackson David R.8https://orcid.org/0000-0001-6387-6876Alingery Pablo9Benvenuto Federico10https://orcid.org/0000-0002-4776-0256Campi Cristinahttps://orcid.org/0000-0003-2105-8554Florios Konstantinoshttps://orcid.org/0000-0002-8210-1125Gontikakis Constantinos11https://orcid.org/0000-0002-7515-5803Guennou Chloe12https://orcid.org/0000-0002-6048-011XGuerra Jordan A.https://orcid.org/0000-0001-8819-9648Kontogiannis Ioannishttps://orcid.org/0000-0002-3694-4527Latorre Vittorio13Murray Sophie A.https://orcid.org/0000-0002-9378-5315Park Sung-Honghttps://orcid.org/0000-0001-9149-6547von Stachelski Samuel14Torbica Aleksandar15Vischi Dario16Worsfold Mark17RCAAM of the Academy of AthensUniversity of Applied Sciences & Arts Northwestern SwitzerlandLESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de ParisLESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de ParisUniversité Paris-Saclay, CNRS, Institut d’Astrophysique SpatialeUniversité Paris-Saclay, CNRS, Institut d’Astrophysique SpatialeUniversity of Applied Sciences & Arts Northwestern SwitzerlandUniversity of Applied Sciences & Arts Northwestern SwitzerlandMet OfficeUniversité Paris-Saclay, CNRS, Institut d’Astrophysique SpatialeDipartimento di Matematica, Università di GenovaRCAAM of the Academy of AthensLESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de ParisDipartimento di Matematica, Università di GenovaUniversity of Applied Sciences & Arts Northwestern SwitzerlandUniversity of Applied Sciences & Arts Northwestern SwitzerlandUniversity of Applied Sciences & Arts Northwestern SwitzerlandMet OfficeThe European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of physical properties viewed as promising flare predictors on equal footing, extending multiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal footing, to optimize the immense Big Data parameter space created by these many predictors; third, the establishment of a robust, three-pronged communication effort oriented toward policy makers, space-weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infrastructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are now available) in multiple machine-learning algorithms, some of which were designed exclusively for the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition, the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejections (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare prediction thus remains inherently probabilistic.https://www.swsc-journal.org/articles/swsc/full_html/2021/01/swsc200032/swsc200032.htmlsunsolar flaressolar flare forecastingmachine learningbig datacomputer science |