The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era

The European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hund...

Full description

Bibliographic Details
Main Authors: Georgoulis Manolis K., Bloomfield D. Shaun, Piana Michele, Massone Anna Maria, Soldati Marco, Gallagher Peter T., Pariat Etienne, Vilmer Nicole, Buchlin Eric, Baudin Frederic, Csillaghy Andre, Sathiapal Hanna, Jackson David R., Alingery Pablo, Benvenuto Federico, Campi Cristina, Florios Konstantinos, Gontikakis Constantinos, Guennou Chloe, Guerra Jordan A., Kontogiannis Ioannis, Latorre Vittorio, Murray Sophie A., Park Sung-Hong, von Stachelski Samuel, Torbica Aleksandar, Vischi Dario, Worsfold Mark
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:Journal of Space Weather and Space Climate
Subjects:
sun
Online Access:https://www.swsc-journal.org/articles/swsc/full_html/2021/01/swsc200032/swsc200032.html
id doaj-30ac247768104f16acced7f8204b51fc
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Georgoulis Manolis K.
Bloomfield D. Shaun
Piana Michele
Massone Anna Maria
Soldati Marco
Gallagher Peter T.
Pariat Etienne
Vilmer Nicole
Buchlin Eric
Baudin Frederic
Csillaghy Andre
Sathiapal Hanna
Jackson David R.
Alingery Pablo
Benvenuto Federico
Campi Cristina
Florios Konstantinos
Gontikakis Constantinos
Guennou Chloe
Guerra Jordan A.
Kontogiannis Ioannis
Latorre Vittorio
Murray Sophie A.
Park Sung-Hong
von Stachelski Samuel
Torbica Aleksandar
Vischi Dario
Worsfold Mark
spellingShingle Georgoulis Manolis K.
Bloomfield D. Shaun
Piana Michele
Massone Anna Maria
Soldati Marco
Gallagher Peter T.
Pariat Etienne
Vilmer Nicole
Buchlin Eric
Baudin Frederic
Csillaghy Andre
Sathiapal Hanna
Jackson David R.
Alingery Pablo
Benvenuto Federico
Campi Cristina
Florios Konstantinos
Gontikakis Constantinos
Guennou Chloe
Guerra Jordan A.
Kontogiannis Ioannis
Latorre Vittorio
Murray Sophie A.
Park Sung-Hong
von Stachelski Samuel
Torbica Aleksandar
Vischi Dario
Worsfold Mark
The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era
Journal of Space Weather and Space Climate
sun
solar flares
solar flare forecasting
machine learning
big data
computer science
author_facet Georgoulis Manolis K.
Bloomfield D. Shaun
Piana Michele
Massone Anna Maria
Soldati Marco
Gallagher Peter T.
Pariat Etienne
Vilmer Nicole
Buchlin Eric
Baudin Frederic
Csillaghy Andre
Sathiapal Hanna
Jackson David R.
Alingery Pablo
Benvenuto Federico
Campi Cristina
Florios Konstantinos
Gontikakis Constantinos
Guennou Chloe
Guerra Jordan A.
Kontogiannis Ioannis
Latorre Vittorio
Murray Sophie A.
Park Sung-Hong
von Stachelski Samuel
Torbica Aleksandar
Vischi Dario
Worsfold Mark
author_sort Georgoulis Manolis K.
title The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era
title_short The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era
title_full The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era
title_fullStr The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era
title_full_unstemmed The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era
title_sort flare likelihood and region eruption forecasting (flarecast) project: flare forecasting in the big data & machine learning era
publisher EDP Sciences
series Journal of Space Weather and Space Climate
issn 2115-7251
publishDate 2021-01-01
description The European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of physical properties viewed as promising flare predictors on equal footing, extending multiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal footing, to optimize the immense Big Data parameter space created by these many predictors; third, the establishment of a robust, three-pronged communication effort oriented toward policy makers, space-weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infrastructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are now available) in multiple machine-learning algorithms, some of which were designed exclusively for the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition, the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejections (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare prediction thus remains inherently probabilistic.
topic sun
solar flares
solar flare forecasting
machine learning
big data
computer science
url https://www.swsc-journal.org/articles/swsc/full_html/2021/01/swsc200032/swsc200032.html
work_keys_str_mv AT georgoulismanolisk theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT bloomfielddshaun theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT pianamichele theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT massoneannamaria theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT soldatimarco theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT gallagherpetert theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT pariatetienne theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT vilmernicole theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT buchlineric theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT baudinfrederic theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT csillaghyandre theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT sathiapalhanna theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT jacksondavidr theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT alingerypablo theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT benvenutofederico theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT campicristina theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT florioskonstantinos theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT gontikakisconstantinos theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT guennouchloe theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT guerrajordana theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT kontogiannisioannis theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT latorrevittorio theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT murraysophiea theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT parksunghong theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT vonstachelskisamuel theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT torbicaaleksandar theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT vischidario theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT worsfoldmark theflarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT georgoulismanolisk flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT bloomfielddshaun flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT pianamichele flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT massoneannamaria flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT soldatimarco flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT gallagherpetert flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT pariatetienne flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT vilmernicole flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT buchlineric flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT baudinfrederic flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT csillaghyandre flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT sathiapalhanna flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT jacksondavidr flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT alingerypablo flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT benvenutofederico flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT campicristina flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT florioskonstantinos flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT gontikakisconstantinos flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT guennouchloe flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT guerrajordana flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT kontogiannisioannis flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT latorrevittorio flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT murraysophiea flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT parksunghong flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT vonstachelskisamuel flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT torbicaaleksandar flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT vischidario flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
AT worsfoldmark flarelikelihoodandregioneruptionforecastingflarecastprojectflareforecastinginthebigdatamachinelearningera
_version_ 1721211383264051200
spelling doaj-30ac247768104f16acced7f8204b51fc2021-08-11T12:30:01ZengEDP SciencesJournal of Space Weather and Space Climate2115-72512021-01-01113910.1051/swsc/2021023swsc200032The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning eraGeorgoulis Manolis K.0https://orcid.org/0000-0001-6913-1330Bloomfield D. Shaunhttps://orcid.org/0000-0002-4183-9895Piana Michelehttps://orcid.org/0000-0003-1700-991XMassone Anna Mariahttps://orcid.org/0000-0003-4966-8864Soldati Marco1https://orcid.org/0000-0001-7043-286XGallagher Peter T.https://orcid.org/0000-0001-9745-0400Pariat Etienne2https://orcid.org/0000-0002-2900-0608Vilmer Nicole3Buchlin Eric4https://orcid.org/0000-0003-4290-1897Baudin Frederic5Csillaghy Andre6Sathiapal Hanna7Jackson David R.8https://orcid.org/0000-0001-6387-6876Alingery Pablo9Benvenuto Federico10https://orcid.org/0000-0002-4776-0256Campi Cristinahttps://orcid.org/0000-0003-2105-8554Florios Konstantinoshttps://orcid.org/0000-0002-8210-1125Gontikakis Constantinos11https://orcid.org/0000-0002-7515-5803Guennou Chloe12https://orcid.org/0000-0002-6048-011XGuerra Jordan A.https://orcid.org/0000-0001-8819-9648Kontogiannis Ioannishttps://orcid.org/0000-0002-3694-4527Latorre Vittorio13Murray Sophie A.https://orcid.org/0000-0002-9378-5315Park Sung-Honghttps://orcid.org/0000-0001-9149-6547von Stachelski Samuel14Torbica Aleksandar15Vischi Dario16Worsfold Mark17RCAAM of the Academy of AthensUniversity of Applied Sciences & Arts Northwestern SwitzerlandLESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de ParisLESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de ParisUniversité Paris-Saclay, CNRS, Institut d’Astrophysique SpatialeUniversité Paris-Saclay, CNRS, Institut d’Astrophysique SpatialeUniversity of Applied Sciences & Arts Northwestern SwitzerlandUniversity of Applied Sciences & Arts Northwestern SwitzerlandMet OfficeUniversité Paris-Saclay, CNRS, Institut d’Astrophysique SpatialeDipartimento di Matematica, Università di GenovaRCAAM of the Academy of AthensLESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de ParisDipartimento di Matematica, Università di GenovaUniversity of Applied Sciences & Arts Northwestern SwitzerlandUniversity of Applied Sciences & Arts Northwestern SwitzerlandUniversity of Applied Sciences & Arts Northwestern SwitzerlandMet OfficeThe European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of physical properties viewed as promising flare predictors on equal footing, extending multiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal footing, to optimize the immense Big Data parameter space created by these many predictors; third, the establishment of a robust, three-pronged communication effort oriented toward policy makers, space-weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infrastructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are now available) in multiple machine-learning algorithms, some of which were designed exclusively for the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition, the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejections (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare prediction thus remains inherently probabilistic.https://www.swsc-journal.org/articles/swsc/full_html/2021/01/swsc200032/swsc200032.htmlsunsolar flaressolar flare forecastingmachine learningbig datacomputer science