Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation
Recently, Sentiment Analysis is used for expression detection of products or services. Sentiment Analysis is one category type with a level of aspect focused on extracting product aspects. One of the common methods used for aspect extraction is Latent Dirichlet Allocation (LDA) using random topic id...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
Ikatan Ahli Indormatika Indonesia
2021-06-01
|
Series: | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) |
Subjects: | |
Online Access: | http://jurnal.iaii.or.id/index.php/RESTI/article/view/3075 |
id |
doaj-30e962fe9a934c2895e8c2a0316aa324 |
---|---|
record_format |
Article |
spelling |
doaj-30e962fe9a934c2895e8c2a0316aa3242021-07-01T23:15:05ZindIkatan Ahli Indormatika IndonesiaJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)2580-07602021-06-015351151910.29207/resti.v5i3.30753075Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet AllocationDinda Adimanggala0Fitra Abdurrachman Bachtiar1Eko Setiawan2Universitas BrawijayaUniversitas BrawijayaUniversitas BrawijayaRecently, Sentiment Analysis is used for expression detection of products or services. Sentiment Analysis is one category type with a level of aspect focused on extracting product aspects. One of the common methods used for aspect extraction is Latent Dirichlet Allocation (LDA) using random topic identification, but this method has not been able to find an acceptable topic with some aspects having been found. Undeterminable topics are referred to as the hidden topics. This study purpose is to evaluate and compare the suitability of identifying hidden topics between human and computer evaluation. The study is also focused on aspect extraction using a variety of LDA innovations. The data used in this study used case studies on e-Commerce. Data were processed using feature selection and grouped using LDA development. Then the data results are processed using Latent Topic Identification based on subjective and objective evaluations. The identification of hidden topic results was evaluated using several semantic and lexicon tests. The evaluation results indicate the comparison of two hidden topic identification assessment values is quite relevant with the average difference in value reaching 6%. As a result, computer calculations assist humans in determining topics if each topic has a low coherence value.http://jurnal.iaii.or.id/index.php/RESTI/article/view/3075sentiment analysis, aspect, topic, extraction, lda, evaluation |
collection |
DOAJ |
language |
Indonesian |
format |
Article |
sources |
DOAJ |
author |
Dinda Adimanggala Fitra Abdurrachman Bachtiar Eko Setiawan |
spellingShingle |
Dinda Adimanggala Fitra Abdurrachman Bachtiar Eko Setiawan Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) sentiment analysis, aspect, topic, extraction, lda, evaluation |
author_facet |
Dinda Adimanggala Fitra Abdurrachman Bachtiar Eko Setiawan |
author_sort |
Dinda Adimanggala |
title |
Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation |
title_short |
Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation |
title_full |
Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation |
title_fullStr |
Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation |
title_full_unstemmed |
Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation |
title_sort |
evaluasi topik tersembunyi berdasarkan aspect extraction menggunakan pengembangan latent dirichlet allocation |
publisher |
Ikatan Ahli Indormatika Indonesia |
series |
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) |
issn |
2580-0760 |
publishDate |
2021-06-01 |
description |
Recently, Sentiment Analysis is used for expression detection of products or services. Sentiment Analysis is one category type with a level of aspect focused on extracting product aspects. One of the common methods used for aspect extraction is Latent Dirichlet Allocation (LDA) using random topic identification, but this method has not been able to find an acceptable topic with some aspects having been found. Undeterminable topics are referred to as the hidden topics. This study purpose is to evaluate and compare the suitability of identifying hidden topics between human and computer evaluation. The study is also focused on aspect extraction using a variety of LDA innovations. The data used in this study used case studies on e-Commerce. Data were processed using feature selection and grouped using LDA development. Then the data results are processed using Latent Topic Identification based on subjective and objective evaluations. The identification of hidden topic results was evaluated using several semantic and lexicon tests. The evaluation results indicate the comparison of two hidden topic identification assessment values is quite relevant with the average difference in value reaching 6%. As a result, computer calculations assist humans in determining topics if each topic has a low coherence value. |
topic |
sentiment analysis, aspect, topic, extraction, lda, evaluation |
url |
http://jurnal.iaii.or.id/index.php/RESTI/article/view/3075 |
work_keys_str_mv |
AT dindaadimanggala evaluasitopiktersembunyiberdasarkanaspectextractionmenggunakanpengembanganlatentdirichletallocation AT fitraabdurrachmanbachtiar evaluasitopiktersembunyiberdasarkanaspectextractionmenggunakanpengembanganlatentdirichletallocation AT ekosetiawan evaluasitopiktersembunyiberdasarkanaspectextractionmenggunakanpengembanganlatentdirichletallocation |
_version_ |
1721345634981642240 |