Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation

Recently, Sentiment Analysis is used for expression detection of products or services. Sentiment Analysis is one category type with a level of aspect focused on extracting product aspects. One of the common methods used for aspect extraction is Latent Dirichlet Allocation (LDA) using random topic id...

Full description

Bibliographic Details
Main Authors: Dinda Adimanggala, Fitra Abdurrachman Bachtiar, Eko Setiawan
Format: Article
Language:Indonesian
Published: Ikatan Ahli Indormatika Indonesia 2021-06-01
Series:Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Subjects:
Online Access:http://jurnal.iaii.or.id/index.php/RESTI/article/view/3075
id doaj-30e962fe9a934c2895e8c2a0316aa324
record_format Article
spelling doaj-30e962fe9a934c2895e8c2a0316aa3242021-07-01T23:15:05ZindIkatan Ahli Indormatika IndonesiaJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)2580-07602021-06-015351151910.29207/resti.v5i3.30753075Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet AllocationDinda Adimanggala0Fitra Abdurrachman Bachtiar1Eko Setiawan2Universitas BrawijayaUniversitas BrawijayaUniversitas BrawijayaRecently, Sentiment Analysis is used for expression detection of products or services. Sentiment Analysis is one category type with a level of aspect focused on extracting product aspects. One of the common methods used for aspect extraction is Latent Dirichlet Allocation (LDA) using random topic identification, but this method has not been able to find an acceptable topic with some aspects having been found. Undeterminable topics are referred to as the hidden topics. This study purpose is to evaluate and compare the suitability of identifying hidden topics between human and computer evaluation. The study is also focused on aspect extraction using a variety of LDA innovations. The data used in this study used case studies on e-Commerce. Data were processed using feature selection and grouped using LDA development. Then the data results are processed using Latent Topic Identification based on subjective and objective evaluations. The identification of hidden topic results was evaluated using several semantic and lexicon tests. The evaluation results indicate the comparison of two hidden topic identification assessment values is quite relevant with the average difference in value reaching 6%. As a result, computer calculations assist humans in determining topics if each topic has a low coherence value.http://jurnal.iaii.or.id/index.php/RESTI/article/view/3075sentiment analysis, aspect, topic, extraction, lda, evaluation
collection DOAJ
language Indonesian
format Article
sources DOAJ
author Dinda Adimanggala
Fitra Abdurrachman Bachtiar
Eko Setiawan
spellingShingle Dinda Adimanggala
Fitra Abdurrachman Bachtiar
Eko Setiawan
Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
sentiment analysis, aspect, topic, extraction, lda, evaluation
author_facet Dinda Adimanggala
Fitra Abdurrachman Bachtiar
Eko Setiawan
author_sort Dinda Adimanggala
title Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation
title_short Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation
title_full Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation
title_fullStr Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation
title_full_unstemmed Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation
title_sort evaluasi topik tersembunyi berdasarkan aspect extraction menggunakan pengembangan latent dirichlet allocation
publisher Ikatan Ahli Indormatika Indonesia
series Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
issn 2580-0760
publishDate 2021-06-01
description Recently, Sentiment Analysis is used for expression detection of products or services. Sentiment Analysis is one category type with a level of aspect focused on extracting product aspects. One of the common methods used for aspect extraction is Latent Dirichlet Allocation (LDA) using random topic identification, but this method has not been able to find an acceptable topic with some aspects having been found. Undeterminable topics are referred to as the hidden topics. This study purpose is to evaluate and compare the suitability of identifying hidden topics between human and computer evaluation. The study is also focused on aspect extraction using a variety of LDA innovations. The data used in this study used case studies on e-Commerce. Data were processed using feature selection and grouped using LDA development. Then the data results are processed using Latent Topic Identification based on subjective and objective evaluations. The identification of hidden topic results was evaluated using several semantic and lexicon tests. The evaluation results indicate the comparison of two hidden topic identification assessment values is quite relevant with the average difference in value reaching 6%. As a result, computer calculations assist humans in determining topics if each topic has a low coherence value.
topic sentiment analysis, aspect, topic, extraction, lda, evaluation
url http://jurnal.iaii.or.id/index.php/RESTI/article/view/3075
work_keys_str_mv AT dindaadimanggala evaluasitopiktersembunyiberdasarkanaspectextractionmenggunakanpengembanganlatentdirichletallocation
AT fitraabdurrachmanbachtiar evaluasitopiktersembunyiberdasarkanaspectextractionmenggunakanpengembanganlatentdirichletallocation
AT ekosetiawan evaluasitopiktersembunyiberdasarkanaspectextractionmenggunakanpengembanganlatentdirichletallocation
_version_ 1721345634981642240