Plasmodium yoelii nigeriensis (N67) Is a Robust Animal Model to Study Malaria Transmission by South American Anopheline Mosquitoes.
Malaria is endemic in the American continent and the Amazonian rainforest is the region with the highest risk of transmission. However, the lack of suitable experimental models to infect malaria vectors from the Americas has limited the progress to understand the biology of transmission in this regi...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5135088?pdf=render |
id |
doaj-310cbc101fb14288b0dbbecad6450d8f |
---|---|
record_format |
Article |
spelling |
doaj-310cbc101fb14288b0dbbecad6450d8f2020-11-25T00:07:59ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-011112e016717810.1371/journal.pone.0167178Plasmodium yoelii nigeriensis (N67) Is a Robust Animal Model to Study Malaria Transmission by South American Anopheline Mosquitoes.Alessandra S OrfanoAna Paula M DuarteAlvaro Molina-CruzPaulo F PimentaCarolina Barillas-MuryMalaria is endemic in the American continent and the Amazonian rainforest is the region with the highest risk of transmission. However, the lack of suitable experimental models to infect malaria vectors from the Americas has limited the progress to understand the biology of transmission in this region. Anopheles aquasalis, a major vector in coastal areas of South America, was found to be highly refractory to infection with two strains of Plasmodium falciparum (NF54 and 7G8) and with Plasmodium berghei (mouse malaria), even when the microbiota was eliminated with antibiotics and oxidative stress was reduced with uric acid. In contrast, An. aquasalis females treated with antibiotics and uric acid are susceptible to infection with a second murine parasite, Plasmodium yoelii nigeriensis N67 (PyN67). Anopheles albimanus, one of the main malaria vectors in Central America, Southern Mexico and the Caribbean, was more susceptible to infection with PyN67 than An. aquasalis, even in the absence of any pre-treatment, but was still less susceptible than Anopheles stephensi. Disruption of the complement-like system in An. albimanus significantly enhanced PyN67 infection, indicating that the mosquito immune system is mounting effective antiplasmodial responses. PyN67 has the ability to infect a broad range of anophelines and is an excellent model to study malaria transmission by South American vectors.http://europepmc.org/articles/PMC5135088?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alessandra S Orfano Ana Paula M Duarte Alvaro Molina-Cruz Paulo F Pimenta Carolina Barillas-Mury |
spellingShingle |
Alessandra S Orfano Ana Paula M Duarte Alvaro Molina-Cruz Paulo F Pimenta Carolina Barillas-Mury Plasmodium yoelii nigeriensis (N67) Is a Robust Animal Model to Study Malaria Transmission by South American Anopheline Mosquitoes. PLoS ONE |
author_facet |
Alessandra S Orfano Ana Paula M Duarte Alvaro Molina-Cruz Paulo F Pimenta Carolina Barillas-Mury |
author_sort |
Alessandra S Orfano |
title |
Plasmodium yoelii nigeriensis (N67) Is a Robust Animal Model to Study Malaria Transmission by South American Anopheline Mosquitoes. |
title_short |
Plasmodium yoelii nigeriensis (N67) Is a Robust Animal Model to Study Malaria Transmission by South American Anopheline Mosquitoes. |
title_full |
Plasmodium yoelii nigeriensis (N67) Is a Robust Animal Model to Study Malaria Transmission by South American Anopheline Mosquitoes. |
title_fullStr |
Plasmodium yoelii nigeriensis (N67) Is a Robust Animal Model to Study Malaria Transmission by South American Anopheline Mosquitoes. |
title_full_unstemmed |
Plasmodium yoelii nigeriensis (N67) Is a Robust Animal Model to Study Malaria Transmission by South American Anopheline Mosquitoes. |
title_sort |
plasmodium yoelii nigeriensis (n67) is a robust animal model to study malaria transmission by south american anopheline mosquitoes. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
Malaria is endemic in the American continent and the Amazonian rainforest is the region with the highest risk of transmission. However, the lack of suitable experimental models to infect malaria vectors from the Americas has limited the progress to understand the biology of transmission in this region. Anopheles aquasalis, a major vector in coastal areas of South America, was found to be highly refractory to infection with two strains of Plasmodium falciparum (NF54 and 7G8) and with Plasmodium berghei (mouse malaria), even when the microbiota was eliminated with antibiotics and oxidative stress was reduced with uric acid. In contrast, An. aquasalis females treated with antibiotics and uric acid are susceptible to infection with a second murine parasite, Plasmodium yoelii nigeriensis N67 (PyN67). Anopheles albimanus, one of the main malaria vectors in Central America, Southern Mexico and the Caribbean, was more susceptible to infection with PyN67 than An. aquasalis, even in the absence of any pre-treatment, but was still less susceptible than Anopheles stephensi. Disruption of the complement-like system in An. albimanus significantly enhanced PyN67 infection, indicating that the mosquito immune system is mounting effective antiplasmodial responses. PyN67 has the ability to infect a broad range of anophelines and is an excellent model to study malaria transmission by South American vectors. |
url |
http://europepmc.org/articles/PMC5135088?pdf=render |
work_keys_str_mv |
AT alessandrasorfano plasmodiumyoeliinigeriensisn67isarobustanimalmodeltostudymalariatransmissionbysouthamericananophelinemosquitoes AT anapaulamduarte plasmodiumyoeliinigeriensisn67isarobustanimalmodeltostudymalariatransmissionbysouthamericananophelinemosquitoes AT alvaromolinacruz plasmodiumyoeliinigeriensisn67isarobustanimalmodeltostudymalariatransmissionbysouthamericananophelinemosquitoes AT paulofpimenta plasmodiumyoeliinigeriensisn67isarobustanimalmodeltostudymalariatransmissionbysouthamericananophelinemosquitoes AT carolinabarillasmury plasmodiumyoeliinigeriensisn67isarobustanimalmodeltostudymalariatransmissionbysouthamericananophelinemosquitoes |
_version_ |
1725417300499103744 |