Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom

<p>We measured the global distribution of tropospheric N<span class="inline-formula"><sub>2</sub></span>O mixing ratios during the NASA airborne Atmospheric Tomography (ATom) mission. ATom measured concentrations of <span class="inline-formula">...

Full description

Bibliographic Details
Main Authors: Y. Gonzalez, R. Commane, E. Manninen, B. C. Daube, L. D. Schiferl, J. B. McManus, K. McKain, E. J. Hintsa, J. W. Elkins, S. A. Montzka, C. Sweeney, F. Moore, J. L. Jimenez, P. Campuzano Jost, T. B. Ryerson, I. Bourgeois, J. Peischl, C. R. Thompson, E. Ray, P. O. Wennberg, J. Crounse, M. Kim, H. M. Allen, P. A. Newman, B. B. Stephens, E. C. Apel, R. S. Hornbrook, B. A. Nault, E. Morgan, S. C. Wofsy
Format: Article
Language:English
Published: Copernicus Publications 2021-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/11113/2021/acp-21-11113-2021.pdf
id doaj-31481aace19749b9945229df648b2b2a
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Y. Gonzalez
Y. Gonzalez
Y. Gonzalez
R. Commane
R. Commane
R. Commane
E. Manninen
B. C. Daube
L. D. Schiferl
J. B. McManus
K. McKain
K. McKain
E. J. Hintsa
E. J. Hintsa
J. W. Elkins
S. A. Montzka
C. Sweeney
F. Moore
F. Moore
J. L. Jimenez
P. Campuzano Jost
T. B. Ryerson
I. Bourgeois
I. Bourgeois
J. Peischl
J. Peischl
C. R. Thompson
E. Ray
E. Ray
P. O. Wennberg
P. O. Wennberg
J. Crounse
M. Kim
H. M. Allen
P. A. Newman
B. B. Stephens
E. C. Apel
R. S. Hornbrook
B. A. Nault
E. Morgan
S. C. Wofsy
spellingShingle Y. Gonzalez
Y. Gonzalez
Y. Gonzalez
R. Commane
R. Commane
R. Commane
E. Manninen
B. C. Daube
L. D. Schiferl
J. B. McManus
K. McKain
K. McKain
E. J. Hintsa
E. J. Hintsa
J. W. Elkins
S. A. Montzka
C. Sweeney
F. Moore
F. Moore
J. L. Jimenez
P. Campuzano Jost
T. B. Ryerson
I. Bourgeois
I. Bourgeois
J. Peischl
J. Peischl
C. R. Thompson
E. Ray
E. Ray
P. O. Wennberg
P. O. Wennberg
J. Crounse
M. Kim
H. M. Allen
P. A. Newman
B. B. Stephens
E. C. Apel
R. S. Hornbrook
B. A. Nault
E. Morgan
S. C. Wofsy
Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom
Atmospheric Chemistry and Physics
author_facet Y. Gonzalez
Y. Gonzalez
Y. Gonzalez
R. Commane
R. Commane
R. Commane
E. Manninen
B. C. Daube
L. D. Schiferl
J. B. McManus
K. McKain
K. McKain
E. J. Hintsa
E. J. Hintsa
J. W. Elkins
S. A. Montzka
C. Sweeney
F. Moore
F. Moore
J. L. Jimenez
P. Campuzano Jost
T. B. Ryerson
I. Bourgeois
I. Bourgeois
J. Peischl
J. Peischl
C. R. Thompson
E. Ray
E. Ray
P. O. Wennberg
P. O. Wennberg
J. Crounse
M. Kim
H. M. Allen
P. A. Newman
B. B. Stephens
E. C. Apel
R. S. Hornbrook
B. A. Nault
E. Morgan
S. C. Wofsy
author_sort Y. Gonzalez
title Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom
title_short Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom
title_full Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom
title_fullStr Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom
title_full_unstemmed Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom
title_sort impact of stratospheric air and surface emissions on tropospheric nitrous oxide during atom
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2021-07-01
description <p>We measured the global distribution of tropospheric N<span class="inline-formula"><sub>2</sub></span>O mixing ratios during the NASA airborne Atmospheric Tomography (ATom) mission. ATom measured concentrations of <span class="inline-formula">∼</span> 300 gas species and aerosol properties in 647 vertical profiles spanning the Pacific, Atlantic, Arctic, and much of the Southern Ocean basins, nearly from pole to pole, over four seasons (2016–2018). We measured N<span class="inline-formula"><sub>2</sub></span>O concentrations at 1 Hz using a quantum cascade laser spectrometer (QCLS). We introduced a new spectral retrieval method to account for the pressure and temperature sensitivity of the instrument when deployed on aircraft. This retrieval strategy improved the precision of our ATom QCLS N<span class="inline-formula"><sub>2</sub></span>O measurements by a factor of three (based on the standard deviation of calibration measurements). Our measurements show that most of the variance of N<span class="inline-formula"><sub>2</sub></span>O mixing ratios in the troposphere is driven by the influence of N<span class="inline-formula"><sub>2</sub></span>O-depleted stratospheric air, especially at mid- and high latitudes. We observe the downward propagation of lower N<span class="inline-formula"><sub>2</sub></span>O mixing ratios (compared to surface stations) that tracks the influence of stratosphere–troposphere exchange through the tropospheric column down to the surface. The highest N<span class="inline-formula"><sub>2</sub></span>O mixing ratios occur close to the Equator, extending through the boundary layer and<span id="page11114"/> free troposphere. We observed influences from a complex and diverse mixture of N<span class="inline-formula"><sub>2</sub></span>O sources, with emission source types identified using the rich suite of chemical species measured on ATom and the geographical origin calculated using an atmospheric transport model. Although ATom flights were mostly over the oceans, the most prominent N<span class="inline-formula"><sub>2</sub></span>O enhancements were associated with anthropogenic emissions, including from industry (e.g., oil and gas), urban sources, and biomass burning, especially in the tropical Atlantic outflow from Africa. Enhanced N<span class="inline-formula"><sub>2</sub></span>O mixing ratios are mostly associated with pollution-related tracers arriving from the coastal area of Nigeria. Peaks of N<span class="inline-formula"><sub>2</sub></span>O are often associated with indicators of photochemical processing, suggesting possible unexpected source processes. In most cases, the results show how difficult it is to separate the mixture of different sources in the atmosphere, which may contribute to uncertainties in the N<span class="inline-formula"><sub>2</sub></span>O global budget. The extensive data set from ATom will help improve the understanding of N<span class="inline-formula"><sub>2</sub></span>O emission processes and their representation in global models.</p>
url https://acp.copernicus.org/articles/21/11113/2021/acp-21-11113-2021.pdf
work_keys_str_mv AT ygonzalez impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT ygonzalez impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT ygonzalez impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT rcommane impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT rcommane impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT rcommane impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT emanninen impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT bcdaube impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT ldschiferl impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT jbmcmanus impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT kmckain impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT kmckain impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT ejhintsa impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT ejhintsa impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT jwelkins impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT samontzka impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT csweeney impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT fmoore impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT fmoore impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT jljimenez impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT pcampuzanojost impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT tbryerson impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT ibourgeois impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT ibourgeois impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT jpeischl impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT jpeischl impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT crthompson impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT eray impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT eray impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT powennberg impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT powennberg impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT jcrounse impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT mkim impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT hmallen impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT panewman impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT bbstephens impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT ecapel impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT rshornbrook impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT banault impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT emorgan impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
AT scwofsy impactofstratosphericairandsurfaceemissionsontroposphericnitrousoxideduringatom
_version_ 1721291293072556032
spelling doaj-31481aace19749b9945229df648b2b2a2021-07-22T12:57:12ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-07-0121111131113210.5194/acp-21-11113-2021Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATomY. Gonzalez0Y. Gonzalez1Y. Gonzalez2R. Commane3R. Commane4R. Commane5E. Manninen6B. C. Daube7L. D. Schiferl8J. B. McManus9K. McKain10K. McKain11E. J. Hintsa12E. J. Hintsa13J. W. Elkins14S. A. Montzka15C. Sweeney16F. Moore17F. Moore18J. L. Jimenez19P. Campuzano Jost20T. B. Ryerson21I. Bourgeois22I. Bourgeois23J. Peischl24J. Peischl25C. R. Thompson26E. Ray27E. Ray28P. O. Wennberg29P. O. Wennberg30J. Crounse31M. Kim32H. M. Allen33P. A. Newman34B. B. Stephens35E. C. Apel36R. S. Hornbrook37B. A. Nault38E. Morgan39S. C. Wofsy40John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USACIMEL Electronique, Paris, 75011, FranceIzaña Atmospheric Research Centre, Santa Cruz de Tenerife, 38001, SpainJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USADept. of Earth and Environmental Science, Columbia University, New York, NY 10027, USALamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USALamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USACenter for Atmospheric and Environmental Chemistry, Aerodyne Research Inc., Billerica, MA 01821, USANOAA Global Monitoring Laboratory, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USANOAA Global Monitoring Laboratory, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USANOAA Global Monitoring Laboratory, Boulder, CO 80305, USANOAA Global Monitoring Laboratory, Boulder, CO 80305, USANOAA Global Monitoring Laboratory, Boulder, CO 80305, USANOAA Global Monitoring Laboratory, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USANOAA Chemical Sciences Laboratory, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USANOAA Chemical Sciences Laboratory, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USANOAA Chemical Sciences Laboratory, Boulder, CO 80305, USANOAA Chemical Sciences Laboratory, Boulder, CO 80305, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USANOAA Chemical Sciences Laboratory, Boulder, CO 80305, USADivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USADivision of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USADivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USADivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USADivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USANASA Goddard Space Flight Center, Greenbelt, MD 20771, USAEarth Observing Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO 80301, USAAtmospheric Chemistry Observations and Modeling Lab, NCAR, Boulder, CO 80301, USAAtmospheric Chemistry Observations and Modeling Lab, NCAR, Boulder, CO 80301, USACenter for Aerosol and Cloud Chemistry, Aerodyne Research, Inc., Billerica, MA 01821, USAScripps Institution of Oceanography, University of California San Diego, CA 92037, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA<p>We measured the global distribution of tropospheric N<span class="inline-formula"><sub>2</sub></span>O mixing ratios during the NASA airborne Atmospheric Tomography (ATom) mission. ATom measured concentrations of <span class="inline-formula">∼</span> 300 gas species and aerosol properties in 647 vertical profiles spanning the Pacific, Atlantic, Arctic, and much of the Southern Ocean basins, nearly from pole to pole, over four seasons (2016–2018). We measured N<span class="inline-formula"><sub>2</sub></span>O concentrations at 1 Hz using a quantum cascade laser spectrometer (QCLS). We introduced a new spectral retrieval method to account for the pressure and temperature sensitivity of the instrument when deployed on aircraft. This retrieval strategy improved the precision of our ATom QCLS N<span class="inline-formula"><sub>2</sub></span>O measurements by a factor of three (based on the standard deviation of calibration measurements). Our measurements show that most of the variance of N<span class="inline-formula"><sub>2</sub></span>O mixing ratios in the troposphere is driven by the influence of N<span class="inline-formula"><sub>2</sub></span>O-depleted stratospheric air, especially at mid- and high latitudes. We observe the downward propagation of lower N<span class="inline-formula"><sub>2</sub></span>O mixing ratios (compared to surface stations) that tracks the influence of stratosphere–troposphere exchange through the tropospheric column down to the surface. The highest N<span class="inline-formula"><sub>2</sub></span>O mixing ratios occur close to the Equator, extending through the boundary layer and<span id="page11114"/> free troposphere. We observed influences from a complex and diverse mixture of N<span class="inline-formula"><sub>2</sub></span>O sources, with emission source types identified using the rich suite of chemical species measured on ATom and the geographical origin calculated using an atmospheric transport model. Although ATom flights were mostly over the oceans, the most prominent N<span class="inline-formula"><sub>2</sub></span>O enhancements were associated with anthropogenic emissions, including from industry (e.g., oil and gas), urban sources, and biomass burning, especially in the tropical Atlantic outflow from Africa. Enhanced N<span class="inline-formula"><sub>2</sub></span>O mixing ratios are mostly associated with pollution-related tracers arriving from the coastal area of Nigeria. Peaks of N<span class="inline-formula"><sub>2</sub></span>O are often associated with indicators of photochemical processing, suggesting possible unexpected source processes. In most cases, the results show how difficult it is to separate the mixture of different sources in the atmosphere, which may contribute to uncertainties in the N<span class="inline-formula"><sub>2</sub></span>O global budget. The extensive data set from ATom will help improve the understanding of N<span class="inline-formula"><sub>2</sub></span>O emission processes and their representation in global models.</p>https://acp.copernicus.org/articles/21/11113/2021/acp-21-11113-2021.pdf