Recruitment of two dyneins to an mRNA-dependent Bicaudal D transport complex

We investigated the role of full-length Drosophila Bicaudal D (BicD) binding partners in dynein-dynactin activation for mRNA transport on microtubules. Full-length BicD robustly activated dynein-dynactin motility only when both the mRNA binding protein Egalitarian (Egl) and K10 mRNA cargo were prese...

Full description

Bibliographic Details
Main Authors: Thomas E Sladewski, Neil Billington, M Yusuf Ali, Carol S Bookwalter, Hailong Lu, Elena B Krementsova, Trina A Schroer, Kathleen M Trybus
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2018-06-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/36306
Description
Summary:We investigated the role of full-length Drosophila Bicaudal D (BicD) binding partners in dynein-dynactin activation for mRNA transport on microtubules. Full-length BicD robustly activated dynein-dynactin motility only when both the mRNA binding protein Egalitarian (Egl) and K10 mRNA cargo were present, and electron microscopy showed that both Egl and mRNA were needed to disrupt a looped, auto-inhibited BicD conformation. BicD can recruit two dimeric dyneins, resulting in faster speeds and longer runs than with one dynein. Moving complexes predominantly contained two Egl molecules and one K10 mRNA. This mRNA-bound configuration makes Egl bivalent, likely enhancing its avidity for BicD and thus its ability to disrupt BicD auto-inhibition. Consistent with this idea, artificially dimerized Egl activates dynein-dynactin-BicD in the absence of mRNA. The ability of mRNA cargo to orchestrate the activation of the mRNP (messenger ribonucleotide protein) complex is an elegant way to ensure that only cargo-bound motors are motile.
ISSN:2050-084X