The eclectic flavor symmetry of the ℤ2 orbifold
Abstract Modular symmetries naturally combine with traditional flavor symmetries and CP $$ \mathcal{CP} $$ , giving rise to the so-called eclectic flavor symmetry. We apply this scheme to the two-dimensional ℤ2 orbifold, which is equipped with two modular symmetries SL(2, ℤ) T and SL(2, ℤ) U associa...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-02-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP02(2021)018 |
id |
doaj-31e69cc9ee844c009aa14d682f6bfd53 |
---|---|
record_format |
Article |
spelling |
doaj-31e69cc9ee844c009aa14d682f6bfd532021-02-07T12:08:11ZengSpringerOpenJournal of High Energy Physics1029-84792021-02-012021212910.1007/JHEP02(2021)018The eclectic flavor symmetry of the ℤ2 orbifoldAlexander Baur0Moritz Kade1Hans Peter Nilles2Saúl Ramos-Sánchez3Patrick K. S. Vaudrevange4Physik Department T75, Technische Universität MünchenPhysik Department T75, Technische Universität MünchenBethe Center for Theoretical Physics and Physikalisches Institut der Universität BonnPhysik Department T75, Technische Universität MünchenPhysik Department T75, Technische Universität MünchenAbstract Modular symmetries naturally combine with traditional flavor symmetries and CP $$ \mathcal{CP} $$ , giving rise to the so-called eclectic flavor symmetry. We apply this scheme to the two-dimensional ℤ2 orbifold, which is equipped with two modular symmetries SL(2, ℤ) T and SL(2, ℤ) U associated with two moduli: the Kähler modulus T and the complex structure modulus U. The resulting finite modular group is ((S 3 × S 3) ⋊ ℤ4) × ℤ2 including mirror symmetry (that exchanges T and U) and a generalized CP $$ \mathcal{CP} $$ -transformation. Together with the traditional flavor symmetry (D 8 × D 8)/ℤ2, this leads to a huge eclectic flavor group with 4608 elements. At specific regions in moduli space we observe enhanced unified flavor symmetries with as many as 1152 elements for the tetrahedral shaped orbifold and T = U = exp π i 3 $$ \left\langle T\right\rangle =\left\langle U\right\rangle =\exp \left(\frac{\pi \mathrm{i}}{3}\right) $$ . This rich eclectic structure implies interesting (modular) flavor groups for particle physics models derived form string theory.https://doi.org/10.1007/JHEP02(2021)018Compactification and String ModelsDiscrete SymmetriesField Theories in Higher DimensionsSuperstrings and Heterotic Strings |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alexander Baur Moritz Kade Hans Peter Nilles Saúl Ramos-Sánchez Patrick K. S. Vaudrevange |
spellingShingle |
Alexander Baur Moritz Kade Hans Peter Nilles Saúl Ramos-Sánchez Patrick K. S. Vaudrevange The eclectic flavor symmetry of the ℤ2 orbifold Journal of High Energy Physics Compactification and String Models Discrete Symmetries Field Theories in Higher Dimensions Superstrings and Heterotic Strings |
author_facet |
Alexander Baur Moritz Kade Hans Peter Nilles Saúl Ramos-Sánchez Patrick K. S. Vaudrevange |
author_sort |
Alexander Baur |
title |
The eclectic flavor symmetry of the ℤ2 orbifold |
title_short |
The eclectic flavor symmetry of the ℤ2 orbifold |
title_full |
The eclectic flavor symmetry of the ℤ2 orbifold |
title_fullStr |
The eclectic flavor symmetry of the ℤ2 orbifold |
title_full_unstemmed |
The eclectic flavor symmetry of the ℤ2 orbifold |
title_sort |
eclectic flavor symmetry of the ℤ2 orbifold |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2021-02-01 |
description |
Abstract Modular symmetries naturally combine with traditional flavor symmetries and CP $$ \mathcal{CP} $$ , giving rise to the so-called eclectic flavor symmetry. We apply this scheme to the two-dimensional ℤ2 orbifold, which is equipped with two modular symmetries SL(2, ℤ) T and SL(2, ℤ) U associated with two moduli: the Kähler modulus T and the complex structure modulus U. The resulting finite modular group is ((S 3 × S 3) ⋊ ℤ4) × ℤ2 including mirror symmetry (that exchanges T and U) and a generalized CP $$ \mathcal{CP} $$ -transformation. Together with the traditional flavor symmetry (D 8 × D 8)/ℤ2, this leads to a huge eclectic flavor group with 4608 elements. At specific regions in moduli space we observe enhanced unified flavor symmetries with as many as 1152 elements for the tetrahedral shaped orbifold and T = U = exp π i 3 $$ \left\langle T\right\rangle =\left\langle U\right\rangle =\exp \left(\frac{\pi \mathrm{i}}{3}\right) $$ . This rich eclectic structure implies interesting (modular) flavor groups for particle physics models derived form string theory. |
topic |
Compactification and String Models Discrete Symmetries Field Theories in Higher Dimensions Superstrings and Heterotic Strings |
url |
https://doi.org/10.1007/JHEP02(2021)018 |
work_keys_str_mv |
AT alexanderbaur theeclecticflavorsymmetryofthez2orbifold AT moritzkade theeclecticflavorsymmetryofthez2orbifold AT hanspeternilles theeclecticflavorsymmetryofthez2orbifold AT saulramossanchez theeclecticflavorsymmetryofthez2orbifold AT patrickksvaudrevange theeclecticflavorsymmetryofthez2orbifold AT alexanderbaur eclecticflavorsymmetryofthez2orbifold AT moritzkade eclecticflavorsymmetryofthez2orbifold AT hanspeternilles eclecticflavorsymmetryofthez2orbifold AT saulramossanchez eclecticflavorsymmetryofthez2orbifold AT patrickksvaudrevange eclecticflavorsymmetryofthez2orbifold |
_version_ |
1724281657767231488 |