The eclectic flavor symmetry of the ℤ2 orbifold

Abstract Modular symmetries naturally combine with traditional flavor symmetries and CP $$ \mathcal{CP} $$ , giving rise to the so-called eclectic flavor symmetry. We apply this scheme to the two-dimensional ℤ2 orbifold, which is equipped with two modular symmetries SL(2, ℤ) T and SL(2, ℤ) U associa...

Full description

Bibliographic Details
Main Authors: Alexander Baur, Moritz Kade, Hans Peter Nilles, Saúl Ramos-Sánchez, Patrick K. S. Vaudrevange
Format: Article
Language:English
Published: SpringerOpen 2021-02-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP02(2021)018
id doaj-31e69cc9ee844c009aa14d682f6bfd53
record_format Article
spelling doaj-31e69cc9ee844c009aa14d682f6bfd532021-02-07T12:08:11ZengSpringerOpenJournal of High Energy Physics1029-84792021-02-012021212910.1007/JHEP02(2021)018The eclectic flavor symmetry of the ℤ2 orbifoldAlexander Baur0Moritz Kade1Hans Peter Nilles2Saúl Ramos-Sánchez3Patrick K. S. Vaudrevange4Physik Department T75, Technische Universität MünchenPhysik Department T75, Technische Universität MünchenBethe Center for Theoretical Physics and Physikalisches Institut der Universität BonnPhysik Department T75, Technische Universität MünchenPhysik Department T75, Technische Universität MünchenAbstract Modular symmetries naturally combine with traditional flavor symmetries and CP $$ \mathcal{CP} $$ , giving rise to the so-called eclectic flavor symmetry. We apply this scheme to the two-dimensional ℤ2 orbifold, which is equipped with two modular symmetries SL(2, ℤ) T and SL(2, ℤ) U associated with two moduli: the Kähler modulus T and the complex structure modulus U. The resulting finite modular group is ((S 3 × S 3) ⋊ ℤ4) × ℤ2 including mirror symmetry (that exchanges T and U) and a generalized CP $$ \mathcal{CP} $$ -transformation. Together with the traditional flavor symmetry (D 8 × D 8)/ℤ2, this leads to a huge eclectic flavor group with 4608 elements. At specific regions in moduli space we observe enhanced unified flavor symmetries with as many as 1152 elements for the tetrahedral shaped orbifold and T = U = exp π i 3 $$ \left\langle T\right\rangle =\left\langle U\right\rangle =\exp \left(\frac{\pi \mathrm{i}}{3}\right) $$ . This rich eclectic structure implies interesting (modular) flavor groups for particle physics models derived form string theory.https://doi.org/10.1007/JHEP02(2021)018Compactification and String ModelsDiscrete SymmetriesField Theories in Higher DimensionsSuperstrings and Heterotic Strings
collection DOAJ
language English
format Article
sources DOAJ
author Alexander Baur
Moritz Kade
Hans Peter Nilles
Saúl Ramos-Sánchez
Patrick K. S. Vaudrevange
spellingShingle Alexander Baur
Moritz Kade
Hans Peter Nilles
Saúl Ramos-Sánchez
Patrick K. S. Vaudrevange
The eclectic flavor symmetry of the ℤ2 orbifold
Journal of High Energy Physics
Compactification and String Models
Discrete Symmetries
Field Theories in Higher Dimensions
Superstrings and Heterotic Strings
author_facet Alexander Baur
Moritz Kade
Hans Peter Nilles
Saúl Ramos-Sánchez
Patrick K. S. Vaudrevange
author_sort Alexander Baur
title The eclectic flavor symmetry of the ℤ2 orbifold
title_short The eclectic flavor symmetry of the ℤ2 orbifold
title_full The eclectic flavor symmetry of the ℤ2 orbifold
title_fullStr The eclectic flavor symmetry of the ℤ2 orbifold
title_full_unstemmed The eclectic flavor symmetry of the ℤ2 orbifold
title_sort eclectic flavor symmetry of the ℤ2 orbifold
publisher SpringerOpen
series Journal of High Energy Physics
issn 1029-8479
publishDate 2021-02-01
description Abstract Modular symmetries naturally combine with traditional flavor symmetries and CP $$ \mathcal{CP} $$ , giving rise to the so-called eclectic flavor symmetry. We apply this scheme to the two-dimensional ℤ2 orbifold, which is equipped with two modular symmetries SL(2, ℤ) T and SL(2, ℤ) U associated with two moduli: the Kähler modulus T and the complex structure modulus U. The resulting finite modular group is ((S 3 × S 3) ⋊ ℤ4) × ℤ2 including mirror symmetry (that exchanges T and U) and a generalized CP $$ \mathcal{CP} $$ -transformation. Together with the traditional flavor symmetry (D 8 × D 8)/ℤ2, this leads to a huge eclectic flavor group with 4608 elements. At specific regions in moduli space we observe enhanced unified flavor symmetries with as many as 1152 elements for the tetrahedral shaped orbifold and T = U = exp π i 3 $$ \left\langle T\right\rangle =\left\langle U\right\rangle =\exp \left(\frac{\pi \mathrm{i}}{3}\right) $$ . This rich eclectic structure implies interesting (modular) flavor groups for particle physics models derived form string theory.
topic Compactification and String Models
Discrete Symmetries
Field Theories in Higher Dimensions
Superstrings and Heterotic Strings
url https://doi.org/10.1007/JHEP02(2021)018
work_keys_str_mv AT alexanderbaur theeclecticflavorsymmetryofthez2orbifold
AT moritzkade theeclecticflavorsymmetryofthez2orbifold
AT hanspeternilles theeclecticflavorsymmetryofthez2orbifold
AT saulramossanchez theeclecticflavorsymmetryofthez2orbifold
AT patrickksvaudrevange theeclecticflavorsymmetryofthez2orbifold
AT alexanderbaur eclecticflavorsymmetryofthez2orbifold
AT moritzkade eclecticflavorsymmetryofthez2orbifold
AT hanspeternilles eclecticflavorsymmetryofthez2orbifold
AT saulramossanchez eclecticflavorsymmetryofthez2orbifold
AT patrickksvaudrevange eclecticflavorsymmetryofthez2orbifold
_version_ 1724281657767231488