Magnetic Carbon Microspheres as a Reusable Adsorbent for Sulfonamide Removal from Water

Abstract Novel reusable magnetic carbon microspheres (MCMs) were prepared by hydrothermal method with glucose as carbon source and Fe3O4 nanoparticles as magnetic raw materials. And adsorption performance of MCMs for sulfonamide removal from water was investigated in detail. The results indicated th...

Full description

Bibliographic Details
Main Authors: Kewei Dai, Fenghe Wang, Wei Jiang, Yajun Chen, Jing Mao, Jian Bao
Format: Article
Language:English
Published: SpringerOpen 2017-09-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-017-2295-2
Description
Summary:Abstract Novel reusable magnetic carbon microspheres (MCMs) were prepared by hydrothermal method with glucose as carbon source and Fe3O4 nanoparticles as magnetic raw materials. And adsorption performance of MCMs for sulfonamide removal from water was investigated in detail. The results indicated that the calcination temperature and calcination time had significant effects on the surface area and its volume porous of MCMs. When MCMs were calcined in 600 °C for 1 h, the surface area and volume porous of MCMs were 1228 m2/g and 0.448 m3/g, respectively. The adsorption results showed that the adsorption data fitted well with the Langmuir isotherm model and followed pseudo-second-order kinetics. When the pH value was changed from 4.0 to 10.0, the adsorption capacity of MCMs for sulfonamide was decreased from 24.6 to 19.2 mg/g. The adsorption capacity of as-synthesized MCMs achieved 18.31 mg/g after it was reused four times, which exhibited a desirable adsorption capacity and reusability.
ISSN:1931-7573
1556-276X