Total Roman Domination Number of Rooted Product Graphs

Let <i>G</i> be a graph with no isolated vertex and <inline-formula><math display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→<...

Full description

Bibliographic Details
Main Authors: Abel Cabrera Martínez, Suitberto Cabrera García, Andrés Carrión García, Frank A. Hernández Mira
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/10/1850
id doaj-32b257d18a41491ea18d1ef341919612
record_format Article
spelling doaj-32b257d18a41491ea18d1ef3419196122020-11-25T03:44:37ZengMDPI AGMathematics2227-73902020-10-0181850185010.3390/math8101850Total Roman Domination Number of Rooted Product GraphsAbel Cabrera Martínez0Suitberto Cabrera García1Andrés Carrión García2Frank A. Hernández Mira3Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, SpainDepartamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, SpainDepartamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, SpainCentro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Privada de Laurel 13, Col. El Roble, Acapulco, Guerrero 39640, MexicoLet <i>G</i> be a graph with no isolated vertex and <inline-formula><math display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula> a function. If <i>f</i> satisfies that every vertex in the set <inline-formula><math display="inline"><semantics><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo lspace="0pt">:</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>}</mo></mrow></semantics></math></inline-formula> is adjacent to at least one vertex in the set <inline-formula><math display="inline"><semantics><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo lspace="0pt">:</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula>, and if the subgraph induced by the set <inline-formula><math display="inline"><semantics><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo lspace="0pt">:</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> has no isolated vertex, then we say that <i>f</i> is a total Roman dominating function on <i>G</i>. The minimum weight <inline-formula><math display="inline"><semantics><mrow><mi>ω</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> among all total Roman dominating functions <i>f</i> on <i>G</i> is the total Roman domination number of <i>G</i>. In this article we study this parameter for the rooted product graphs. Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of rooted product graphs in terms of domination invariants of the factor graphs involved in this product.https://www.mdpi.com/2227-7390/8/10/1850total Roman dominationtotal dominationrooted product graph
collection DOAJ
language English
format Article
sources DOAJ
author Abel Cabrera Martínez
Suitberto Cabrera García
Andrés Carrión García
Frank A. Hernández Mira
spellingShingle Abel Cabrera Martínez
Suitberto Cabrera García
Andrés Carrión García
Frank A. Hernández Mira
Total Roman Domination Number of Rooted Product Graphs
Mathematics
total Roman domination
total domination
rooted product graph
author_facet Abel Cabrera Martínez
Suitberto Cabrera García
Andrés Carrión García
Frank A. Hernández Mira
author_sort Abel Cabrera Martínez
title Total Roman Domination Number of Rooted Product Graphs
title_short Total Roman Domination Number of Rooted Product Graphs
title_full Total Roman Domination Number of Rooted Product Graphs
title_fullStr Total Roman Domination Number of Rooted Product Graphs
title_full_unstemmed Total Roman Domination Number of Rooted Product Graphs
title_sort total roman domination number of rooted product graphs
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-10-01
description Let <i>G</i> be a graph with no isolated vertex and <inline-formula><math display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula> a function. If <i>f</i> satisfies that every vertex in the set <inline-formula><math display="inline"><semantics><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo lspace="0pt">:</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>}</mo></mrow></semantics></math></inline-formula> is adjacent to at least one vertex in the set <inline-formula><math display="inline"><semantics><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo lspace="0pt">:</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula>, and if the subgraph induced by the set <inline-formula><math display="inline"><semantics><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo lspace="0pt">:</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> has no isolated vertex, then we say that <i>f</i> is a total Roman dominating function on <i>G</i>. The minimum weight <inline-formula><math display="inline"><semantics><mrow><mi>ω</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> among all total Roman dominating functions <i>f</i> on <i>G</i> is the total Roman domination number of <i>G</i>. In this article we study this parameter for the rooted product graphs. Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of rooted product graphs in terms of domination invariants of the factor graphs involved in this product.
topic total Roman domination
total domination
rooted product graph
url https://www.mdpi.com/2227-7390/8/10/1850
work_keys_str_mv AT abelcabreramartinez totalromandominationnumberofrootedproductgraphs
AT suitbertocabreragarcia totalromandominationnumberofrootedproductgraphs
AT andrescarriongarcia totalromandominationnumberofrootedproductgraphs
AT frankahernandezmira totalromandominationnumberofrootedproductgraphs
_version_ 1724513741230309376