Micro-Vessel Image Segmentation Based on the AD-UNet Model

Retinal vessel segmentation plays a vital role in computer-aided diagnosis and treatment of retinal diseases. Considering the low contrast between retinal vessels and the background image, complex structural information as well as blurred boundaries between tissue and blood vessels, the retinal vess...

Full description

Bibliographic Details
Main Authors: Zhongming Luo, Yu Zhang, Lei Zhou, Binge Zhang, Jianan Luo, Haibin Wu
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8859307/
Description
Summary:Retinal vessel segmentation plays a vital role in computer-aided diagnosis and treatment of retinal diseases. Considering the low contrast between retinal vessels and the background image, complex structural information as well as blurred boundaries between tissue and blood vessels, the retinal vessel image segmentation algorithm based on the improved U-Net network is proposed in the paper. The algorithm introduces an attention mechanism and densely connected network into the original U-Net network and realizes the automatic segmentation of retinal vessels. According to the test results of the algorithm on commonly-used datasets of the DRIVE and STARE fundus images, respectively, the accuracy is 0.9663 and 0.9684; the sensitivity is 0.8075 and 0.8437; the specificity is 0.9814 and 0.9762; the AUC values are 0.9846 and 0.9765; and the F-measures are 0.8203 and 0.8419, respectively. In the paper, the Attention-Dense-UNet (AD-UNet) algorithm is applied to segment human bulbar conjunctival micro-vessels. The experimental results show that the algorithm can achieve ideal segmentation results.
ISSN:2169-3536