Summary: | ZnZrOx nanoparticles were prepared by MOF calcination and co-precipitation methods and used as metal oxide components of bifunctional catalysts for syngas-to-olefins (STO). The results of characterization analysis, like XRD, XPS, H2-TPR and CO-TPD, illustrated that different preparation methods apparently influenced surface chemistry properties of oxides. MOF-derived oxides possessed abundant oxygen vacancies and Zn-O-Zr local structure which were beneficial to CO activation and the formation of methanol and dimethyl ether. When combining with SAPO-34, the bifunctional catalysts containing MOF-derived ZnZrOx achieved 22.5% CO conversion and 79.7% light olefins selectivity among hydrocarbons.
|