The Global Methane Budget 2000–2017

<p>Understanding and quantifying the global methane (<span class="inline-formula">CH<sub>4</sub></span>) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of <span class="inline-fo...

Full description

Bibliographic Details
Main Authors: M. Saunois, A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, P. Ciais, V. K. Arora, D. Bastviken, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, K. M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P. M. Crill, K. Covey, C. L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M. I. Hegglin, L. Höglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K. M. Jensen, F. Joos, T. Kleinen, P. B. Krummel, R. L. Langenfelds, G. G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K. C. McDonald, J. McNorton, P. A. Miller, J. R. Melton, I. Morino, J. Müller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O'Doherty, R. J. Parker, C. Peng, S. Peng, G. P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W. J. Riley, J. A. Rosentreter, A. Segers, I. J. Simpson, H. Shi, S. J. Smith, L. P. Steele, B. F. Thornton, H. Tian, Y. Tohjima, F. N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T. S. Weber, M. van Weele, G. R. van der Werf, R. F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhuang
Format: Article
Language:English
Published: Copernicus Publications 2020-07-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/12/1561/2020/essd-12-1561-2020.pdf
Description
Summary:<p>Understanding and quantifying the global methane (<span class="inline-formula">CH<sub>4</sub></span>) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of <span class="inline-formula">CH<sub>4</sub></span> continue to increase, making <span class="inline-formula">CH<sub>4</sub></span> the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>). The relative importance of <span class="inline-formula">CH<sub>4</sub></span> compared to <span class="inline-formula">CO<sub>2</sub></span> depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping <span class="inline-formula">CH<sub>4</sub></span> sources and from the destruction of <span class="inline-formula">CH<sub>4</sub></span> by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).</p> <p><span id="page1564"/>For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576&thinsp;Tg&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359&thinsp;Tg&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> or <span class="inline-formula">∼</span>&thinsp;60&thinsp;% is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376&thinsp;Tg&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> or 50&thinsp;%–65&thinsp;%). The mean annual total emission for the new decade (2008–2017) is 29&thinsp;Tg&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> larger than our estimate for the previous decade (2000–2009), and 24&thinsp;Tg&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global <span class="inline-formula">CH<sub>4</sub></span> emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30&thinsp;% larger global emissions (737&thinsp;Tg&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (<span class="inline-formula">∼</span>&thinsp;65&thinsp;% of the global budget, <span class="inline-formula">&lt;</span>&thinsp;30<span class="inline-formula"><sup>∘</sup></span>&thinsp;N) compared to mid-latitudes (<span class="inline-formula">∼</span>&thinsp;30&thinsp;%, 30–60<span class="inline-formula"><sup>∘</sup></span>&thinsp;N) and high northern latitudes (<span class="inline-formula">∼</span>&thinsp;4&thinsp;%, 60–90<span class="inline-formula"><sup>∘</sup></span>&thinsp;N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.</p> <p>Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35&thinsp;Tg&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7&thinsp;Tg&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> by 8&thinsp;Tg&thinsp;<span class="inline-formula">CH<sub>4</sub></span>&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5&thinsp;% compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-<span class="inline-formula">CH<sub>4</sub></span> measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.</p> <p>The data presented here can be downloaded from <a href="https://doi.org/10.18160/GCP-CH4-2019">https://doi.org/10.18160/GCP-CH4-2019</a> (Saunois et al., 2020) and from the Global Carbon Project.</p>
ISSN:1866-3508
1866-3516