The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations

<p>The realistic representation of aerosol–cloud interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon region has been one of the motivations for seve...

Full description

Bibliographic Details
Main Authors: P. Polonik, C. Knote, T. Zinner, F. Ewald, T. Kölling, B. Mayer, M. O. Andreae, T. Jurkat-Witschas, T. Klimach, C. Mahnke, S. Molleker, C. Pöhlker, M. L. Pöhlker, U. Pöschl, D. Rosenfeld, C. Voigt, R. Weigel, M. Wendisch
Format: Article
Language:English
Published: Copernicus Publications 2020-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/20/1591/2020/acp-20-1591-2020.pdf
id doaj-34cb3d29803b4343b04096658c9ec6bb
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author P. Polonik
P. Polonik
C. Knote
T. Zinner
F. Ewald
T. Kölling
B. Mayer
M. O. Andreae
M. O. Andreae
T. Jurkat-Witschas
T. Klimach
C. Mahnke
C. Mahnke
S. Molleker
C. Pöhlker
M. L. Pöhlker
U. Pöschl
D. Rosenfeld
C. Voigt
C. Voigt
R. Weigel
M. Wendisch
spellingShingle P. Polonik
P. Polonik
C. Knote
T. Zinner
F. Ewald
T. Kölling
B. Mayer
M. O. Andreae
M. O. Andreae
T. Jurkat-Witschas
T. Klimach
C. Mahnke
C. Mahnke
S. Molleker
C. Pöhlker
M. L. Pöhlker
U. Pöschl
D. Rosenfeld
C. Voigt
C. Voigt
R. Weigel
M. Wendisch
The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations
Atmospheric Chemistry and Physics
author_facet P. Polonik
P. Polonik
C. Knote
T. Zinner
F. Ewald
T. Kölling
B. Mayer
M. O. Andreae
M. O. Andreae
T. Jurkat-Witschas
T. Klimach
C. Mahnke
C. Mahnke
S. Molleker
C. Pöhlker
M. L. Pöhlker
U. Pöschl
D. Rosenfeld
C. Voigt
C. Voigt
R. Weigel
M. Wendisch
author_sort P. Polonik
title The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations
title_short The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations
title_full The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations
title_fullStr The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations
title_full_unstemmed The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations
title_sort challenge of simulating the sensitivity of the amazonian cloud microstructure to cloud condensation nuclei number concentrations
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2020-02-01
description <p>The realistic representation of aerosol–cloud interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon region has been one of the motivations for several field campaigns, including the airborne “Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA)” campaign based in Manaus, Brazil, in September 2014. In this work we combine in situ and remotely sensed aerosol, cloud, and atmospheric radiation data collected during ACRIDICON-CHUVA with regional, online-coupled chemistry-transport simulations to evaluate the model's ability to represent the indirect effects of biomass burning aerosol on cloud microphysical and optical properties (droplet number concentration and effective radius).</p> <p>We found agreement between the modeled and observed median cloud droplet number concentration (CDNC) for low values of CDNC, i.e., low levels of pollution. In general, a linear relationship between modeled and observed CDNC with a slope of 0.3 was found, which implies a systematic underestimation of modeled CDNC when compared to measurements. Variability in cloud condensation nuclei (CCN) number concentrations was also underestimated, and cloud droplet effective radii (<span class="inline-formula"><i>r</i><sub>eff</sub></span>) were overestimated by the model. Modeled effective radius profiles began to saturate around 500 CCN&thinsp;cm<span class="inline-formula"><sup>−3</sup></span> at cloud base, indicating an upper limit for the model sensitivity well below CCN concentrations reached during the burning season in the Amazon Basin. Additional CCN emitted from local fires did not cause a notable change in modeled cloud droplet effective radii. Finally, we also evaluate a parameterization of CDNC at cloud base using more readily available cloud microphysical properties, showing that we are able to derive CDNC at cloud base from cloud-side remote-sensing observations.</p>
url https://www.atmos-chem-phys.net/20/1591/2020/acp-20-1591-2020.pdf
work_keys_str_mv AT ppolonik thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT ppolonik thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cknote thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT tzinner thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT fewald thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT tkolling thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT bmayer thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT moandreae thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT moandreae thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT tjurkatwitschas thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT tklimach thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cmahnke thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cmahnke thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT smolleker thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cpohlker thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT mlpohlker thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT uposchl thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT drosenfeld thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cvoigt thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cvoigt thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT rweigel thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT mwendisch thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT ppolonik challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT ppolonik challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cknote challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT tzinner challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT fewald challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT tkolling challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT bmayer challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT moandreae challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT moandreae challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT tjurkatwitschas challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT tklimach challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cmahnke challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cmahnke challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT smolleker challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cpohlker challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT mlpohlker challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT uposchl challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT drosenfeld challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cvoigt challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT cvoigt challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT rweigel challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
AT mwendisch challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations
_version_ 1725331492937138176
spelling doaj-34cb3d29803b4343b04096658c9ec6bb2020-11-25T00:29:24ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-02-01201591160510.5194/acp-20-1591-2020The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrationsP. Polonik0P. Polonik1C. Knote2T. Zinner3F. Ewald4T. Kölling5B. Mayer6M. O. Andreae7M. O. Andreae8T. Jurkat-Witschas9T. Klimach10C. Mahnke11C. Mahnke12S. Molleker13C. Pöhlker14M. L. Pöhlker15U. Pöschl16D. Rosenfeld17C. Voigt18C. Voigt19R. Weigel20M. Wendisch21Meteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, Germanynow at: Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyScripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Mainz, GermanyInstitut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyInstitute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, IsraelInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, GermanyInstitut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, GermanyLeipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany<p>The realistic representation of aerosol–cloud interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon region has been one of the motivations for several field campaigns, including the airborne “Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA)” campaign based in Manaus, Brazil, in September 2014. In this work we combine in situ and remotely sensed aerosol, cloud, and atmospheric radiation data collected during ACRIDICON-CHUVA with regional, online-coupled chemistry-transport simulations to evaluate the model's ability to represent the indirect effects of biomass burning aerosol on cloud microphysical and optical properties (droplet number concentration and effective radius).</p> <p>We found agreement between the modeled and observed median cloud droplet number concentration (CDNC) for low values of CDNC, i.e., low levels of pollution. In general, a linear relationship between modeled and observed CDNC with a slope of 0.3 was found, which implies a systematic underestimation of modeled CDNC when compared to measurements. Variability in cloud condensation nuclei (CCN) number concentrations was also underestimated, and cloud droplet effective radii (<span class="inline-formula"><i>r</i><sub>eff</sub></span>) were overestimated by the model. Modeled effective radius profiles began to saturate around 500 CCN&thinsp;cm<span class="inline-formula"><sup>−3</sup></span> at cloud base, indicating an upper limit for the model sensitivity well below CCN concentrations reached during the burning season in the Amazon Basin. Additional CCN emitted from local fires did not cause a notable change in modeled cloud droplet effective radii. Finally, we also evaluate a parameterization of CDNC at cloud base using more readily available cloud microphysical properties, showing that we are able to derive CDNC at cloud base from cloud-side remote-sensing observations.</p>https://www.atmos-chem-phys.net/20/1591/2020/acp-20-1591-2020.pdf