The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations
<p>The realistic representation of aerosol–cloud interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon region has been one of the motivations for seve...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-02-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/20/1591/2020/acp-20-1591-2020.pdf |
id |
doaj-34cb3d29803b4343b04096658c9ec6bb |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
P. Polonik P. Polonik C. Knote T. Zinner F. Ewald T. Kölling B. Mayer M. O. Andreae M. O. Andreae T. Jurkat-Witschas T. Klimach C. Mahnke C. Mahnke S. Molleker C. Pöhlker M. L. Pöhlker U. Pöschl D. Rosenfeld C. Voigt C. Voigt R. Weigel M. Wendisch |
spellingShingle |
P. Polonik P. Polonik C. Knote T. Zinner F. Ewald T. Kölling B. Mayer M. O. Andreae M. O. Andreae T. Jurkat-Witschas T. Klimach C. Mahnke C. Mahnke S. Molleker C. Pöhlker M. L. Pöhlker U. Pöschl D. Rosenfeld C. Voigt C. Voigt R. Weigel M. Wendisch The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations Atmospheric Chemistry and Physics |
author_facet |
P. Polonik P. Polonik C. Knote T. Zinner F. Ewald T. Kölling B. Mayer M. O. Andreae M. O. Andreae T. Jurkat-Witschas T. Klimach C. Mahnke C. Mahnke S. Molleker C. Pöhlker M. L. Pöhlker U. Pöschl D. Rosenfeld C. Voigt C. Voigt R. Weigel M. Wendisch |
author_sort |
P. Polonik |
title |
The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations |
title_short |
The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations |
title_full |
The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations |
title_fullStr |
The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations |
title_full_unstemmed |
The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrations |
title_sort |
challenge of simulating the sensitivity of the amazonian cloud microstructure to cloud condensation nuclei number concentrations |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2020-02-01 |
description |
<p>The realistic representation of aerosol–cloud interactions is of primary
importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions
in the Amazon region has been one of the motivations for several field
campaigns, including the airborne “Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA)” campaign based in Manaus, Brazil, in September 2014.
In this work we combine in situ and remotely sensed aerosol, cloud, and
atmospheric radiation data collected during ACRIDICON-CHUVA with regional,
online-coupled chemistry-transport simulations to evaluate the model's ability
to represent the indirect effects of biomass burning aerosol on cloud
microphysical and optical properties (droplet number concentration and effective radius).</p>
<p>We found agreement between the modeled and observed median cloud droplet number
concentration (CDNC) for low values of CDNC, i.e., low levels of pollution. In
general, a linear relationship between modeled and observed CDNC with a slope
of 0.3 was found, which implies a systematic underestimation of modeled CDNC
when compared to measurements. Variability in cloud condensation nuclei (CCN)
number concentrations was also underestimated, and cloud droplet effective radii
(<span class="inline-formula"><i>r</i><sub>eff</sub></span>) were overestimated by the model. Modeled effective radius
profiles began to saturate around 500 CCN cm<span class="inline-formula"><sup>−3</sup></span> at cloud base,
indicating an upper limit for the model sensitivity well below CCN
concentrations reached during the burning season in the Amazon Basin. Additional
CCN emitted from local fires did not cause a notable change in modeled cloud
droplet effective radii. Finally, we also evaluate a parameterization of CDNC at
cloud base using more readily available cloud microphysical properties, showing
that we are able to derive CDNC at cloud base from cloud-side remote-sensing
observations.</p> |
url |
https://www.atmos-chem-phys.net/20/1591/2020/acp-20-1591-2020.pdf |
work_keys_str_mv |
AT ppolonik thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT ppolonik thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cknote thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT tzinner thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT fewald thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT tkolling thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT bmayer thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT moandreae thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT moandreae thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT tjurkatwitschas thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT tklimach thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cmahnke thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cmahnke thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT smolleker thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cpohlker thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT mlpohlker thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT uposchl thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT drosenfeld thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cvoigt thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cvoigt thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT rweigel thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT mwendisch thechallengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT ppolonik challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT ppolonik challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cknote challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT tzinner challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT fewald challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT tkolling challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT bmayer challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT moandreae challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT moandreae challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT tjurkatwitschas challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT tklimach challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cmahnke challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cmahnke challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT smolleker challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cpohlker challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT mlpohlker challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT uposchl challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT drosenfeld challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cvoigt challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT cvoigt challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT rweigel challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations AT mwendisch challengeofsimulatingthesensitivityoftheamazoniancloudmicrostructuretocloudcondensationnucleinumberconcentrations |
_version_ |
1725331492937138176 |
spelling |
doaj-34cb3d29803b4343b04096658c9ec6bb2020-11-25T00:29:24ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-02-01201591160510.5194/acp-20-1591-2020The challenge of simulating the sensitivity of the Amazonian cloud microstructure to cloud condensation nuclei number concentrationsP. Polonik0P. Polonik1C. Knote2T. Zinner3F. Ewald4T. Kölling5B. Mayer6M. O. Andreae7M. O. Andreae8T. Jurkat-Witschas9T. Klimach10C. Mahnke11C. Mahnke12S. Molleker13C. Pöhlker14M. L. Pöhlker15U. Pöschl16D. Rosenfeld17C. Voigt18C. Voigt19R. Weigel20M. Wendisch21Meteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, Germanynow at: Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyScripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Mainz, GermanyInstitut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyMultiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz, GermanyInstitute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, IsraelInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, GermanyInstitut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, GermanyLeipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany<p>The realistic representation of aerosol–cloud interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon region has been one of the motivations for several field campaigns, including the airborne “Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA)” campaign based in Manaus, Brazil, in September 2014. In this work we combine in situ and remotely sensed aerosol, cloud, and atmospheric radiation data collected during ACRIDICON-CHUVA with regional, online-coupled chemistry-transport simulations to evaluate the model's ability to represent the indirect effects of biomass burning aerosol on cloud microphysical and optical properties (droplet number concentration and effective radius).</p> <p>We found agreement between the modeled and observed median cloud droplet number concentration (CDNC) for low values of CDNC, i.e., low levels of pollution. In general, a linear relationship between modeled and observed CDNC with a slope of 0.3 was found, which implies a systematic underestimation of modeled CDNC when compared to measurements. Variability in cloud condensation nuclei (CCN) number concentrations was also underestimated, and cloud droplet effective radii (<span class="inline-formula"><i>r</i><sub>eff</sub></span>) were overestimated by the model. Modeled effective radius profiles began to saturate around 500 CCN cm<span class="inline-formula"><sup>−3</sup></span> at cloud base, indicating an upper limit for the model sensitivity well below CCN concentrations reached during the burning season in the Amazon Basin. Additional CCN emitted from local fires did not cause a notable change in modeled cloud droplet effective radii. Finally, we also evaluate a parameterization of CDNC at cloud base using more readily available cloud microphysical properties, showing that we are able to derive CDNC at cloud base from cloud-side remote-sensing observations.</p>https://www.atmos-chem-phys.net/20/1591/2020/acp-20-1591-2020.pdf |