Enhancement of the AISI 5140 Cold Heading Wire Steel Spheroidization by Adequate Control of the Initial As-Rolled Microstructure

The effect of the initial microstructure and soft annealing temperature on cementite spheroidization and microstructure softening is studied on an AISI 5140 hot-rolled wire. In coarse pearlite microstructure (λ: 0.27 μm), the cementite spheroidization progresses slowly under subcritical treatment, a...

Full description

Bibliographic Details
Main Authors: Jon Arruabarrena, Jose M. Rodriguez-Ibabe
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/2/219
Description
Summary:The effect of the initial microstructure and soft annealing temperature on cementite spheroidization and microstructure softening is studied on an AISI 5140 hot-rolled wire. In coarse pearlite microstructure (λ: 0.27 μm), the cementite spheroidization progresses slowly under subcritical treatment, and the microstructure does not achieve the minimum G2/L2 IFI rating defined in the ASTM F2282 to be used in cold forming operations under any of the annealing treatment studies. Fine pearlite (λ: 0.10 μm) and upper bainite microstructures are more prone to spheroidization, and the minimum G2/L2 IFI rating is achieved under subcritical annealing at 720 °C for 6 h. Independent of the initial microstructure, even in the case of martensite, low hardness values within 165–195 HV are attained after imposing a 10 h long treatment at 720 °C. Annealing treatments conducted at 660 °C and 600 °C on pearlitic microstructures give rise to very poor softening. The G2/L2 rating is not achieved in any of the treatments applied at these two temperatures in this study. In pearlitic microstructures, the spheroidization progresses according to a fault migration mechanism, enhanced by the presence of defects such as lamella terminations, holes, and kinks. In the upper bainite, the row-like disposition of the cementite along the ferrite lath interface provides necks where dissolution and consequent lamellae break-up take place quickly under annealing.
ISSN:2075-4701