Polaron Trapping and Migration in Iron-Doped Lithium Niobate

Photoinduced charge transport in lithium niobate for standard illumination, composition and temperature conditions occurs by means of small polaron hopping either on regular or defective lattice sites. Starting from Marcus-Holstein’s theory for polaron hopping frequency we draw a quantitative pictur...

Full description

Bibliographic Details
Main Authors: Laura Vittadello, Laurent Guilbert, Stanislav Fedorenko, Marco Bazzan
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/3/302
Description
Summary:Photoinduced charge transport in lithium niobate for standard illumination, composition and temperature conditions occurs by means of small polaron hopping either on regular or defective lattice sites. Starting from Marcus-Holstein’s theory for polaron hopping frequency we draw a quantitative picture illustrating two underlying microscopic mechanisms besides experimental observations, namely direct trapping and migration-accelerated polaron trapping transport. Our observations will be referred to the typical outcomes of transient light induced absorption measurements, where the kinetics of a polaron population generated by a laser pulse then decaying towards deep trap sites is measured. Our results help to rationalize the observations beyond simple phenomenological models and may serve as a guide to design the material according to the desired specifications.
ISSN:2073-4352