Vibration Property of a Cryogenic Optical Resonator within a Pulse-Tube Cryostat

Cryogenic ultrastable laser cavities push laser stability to new levels due to their lower thermal noise limitation. Vibrational noise is one of the major obstacles to achieve a thermal-noise-limited cryogenic ultrastable laser system. Here, we carefully analyze the vibrational noise contribution to...

Full description

Bibliographic Details
Main Authors: Yanxia Ye, Leilei He, Yunlong Sun, Fenglei Zhang, Zhiyuan Wang, Zehuang Lu, Jie Zhang
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/14/4696
Description
Summary:Cryogenic ultrastable laser cavities push laser stability to new levels due to their lower thermal noise limitation. Vibrational noise is one of the major obstacles to achieve a thermal-noise-limited cryogenic ultrastable laser system. Here, we carefully analyze the vibrational noise contribution to the laser frequency. We measure the vibrational noise from the top of the pulse-tube cryocooler down to the experiment space. Major differences emerge between room and cryogenic temperature operation. We cooled a homemade 6 cm sapphire optical resonator down to 3.4 K. Locking a 1064 nm laser to the resonator, we measure a frequency stability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow></semantics></math></inline-formula>. The vibration sensitivities change at different excitation frequencies. The vibrational noise analysis of the laser system paves the way for in situ accurate evaluation of vibrational noise for cryogenic systems. This may help in cryostat design and cryogenic precision measurements.
ISSN:1424-8220