The influence of the vertical distribution of emissions on tropospheric chemistry

The atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy atmospheric chemistry) is used to investigate the effect of height dependent emissions on tropospheric chemistry. In a sensitivity simulation, anthropogenic and biomass burning emissions are released in the lowest model layer. Th...

Full description

Bibliographic Details
Main Authors: J. Van Aardenne, P. Jöckel, A. Pozzer
Format: Article
Language:English
Published: Copernicus Publications 2009-12-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/9/9417/2009/acp-9-9417-2009.pdf
Description
Summary:The atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy atmospheric chemistry) is used to investigate the effect of height dependent emissions on tropospheric chemistry. In a sensitivity simulation, anthropogenic and biomass burning emissions are released in the lowest model layer. The resulting tracer distributions are compared to those of a former simulation applying height dependent emissions. Although the differences between the two simulations in the free troposphere are small (less than 5%), large differences are present in polluted regions at the surface, in particular for NO<sub>x</sub> (more than 100%), CO (up to 30%) and non-methane hydrocarbons (up to 30%), whereas for OH the differences at the same locations are somewhat lower (15%). Global ozone formation is virtually unaffected by the choice of the vertical distribution of emissions. Nevertheless, local ozone changes can be up to 30%. Model results of both simulations are further compared to observations from field campaigns and to data from measurement stations.
ISSN:1680-7316
1680-7324