Improvements To Glowworm Swarm Optimization Algorithm

Glowworm Swarm Optimization algorithm is applied for the simultaneous capture of multipleoptima of multimodal functions. The algorithm uses an ensemble of agents, which scan thesearch space and exchange information concerning a fitness of their current position. Thefitness is represented by a level...

Full description

Bibliographic Details
Main Author: Piotr Oramus
Format: Article
Language:English
Published: AGH University of Science and Technology Press 2010-01-01
Series:Computer Science
Subjects:
Online Access:http://journals.agh.edu.pl/csci/article/download/120/69
Description
Summary:Glowworm Swarm Optimization algorithm is applied for the simultaneous capture of multipleoptima of multimodal functions. The algorithm uses an ensemble of agents, which scan thesearch space and exchange information concerning a fitness of their current position. Thefitness is represented by a level of a luminescent quantity called luciferin. An agent movesin direction of randomly chosen neighbour, which broadcasts higher value of the luciferin.Unfortunately, in the absence of neighbours, the agent does not move at all. This is anunwelcome feature, because it diminishes the performance of the algorithm. Additionally,in the case of parallel processing, this feature can lead to unbalanced loads. This paperpresents simple modifications of the original algorithm, which improve performance of thealgorithm by limiting situations, in which the agent cannot move. The paper provides resultsof comparison of an original and modified algorithms calculated for several multimodal testfunctions.
ISSN:1508-2806