A Levenberg–Marquardt Backpropagation Neural Network for the Numerical Treatment of Squeezing Flow With Heat Transfer Model
In this paper, the computational strength in terms of soft computing neural networks backpropagated with the efficacy of Levenberg-Marquard training (NN-BLMT) is presented to study the squeezing flow with the heat transfer model (SF-HTM). The governing system of PDEs is reduced to an equivalent syst...
Main Authors: | Maryam Mabrook Almalki, Eman Salem Alaidarous, Dalal Adnan Maturi, Muhammad Asif Zahoor Raja, Muhammad Shoaib |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9296207/ |
Similar Items
-
Optimization through the Levenberg—Marquardt Backpropagation Method for a Magnetohydrodynamic Squeezing Flow System
by: Maryam Mabrook Almalki, et al.
Published: (2021-06-01) -
Implementasi Pengolahan Citra Untuk Identifikasi Daun Tanaman Obat Menggunakan Levenberg-Marquardt Backpropagation
by: Atsilfia Alfath Syam, et al.
Published: (2021-06-01) -
Computational Intelligent Paradigms to Solve the Nonlinear SIR System for Spreading Infection and Treatment Using Levenberg–Marquardt Backpropagation
by: Muhammad Umar, et al.
Published: (2021-04-01) -
Kinerja Algoritma Pelatihan Levenberg-Marquardt dalam Variasi Banyaknya Neuron pada Lapisan Tersembunyi
by: Hindayati Mustafidah, et al.
Published: (2019-11-01) -
Optimasi Algoritma Pelatihan Levenberg–Marquardt Berdasarkan Variasi Nilai Learning-Rate dan Jumlah Neuron dalam Lapisan Tersembunyi
by: Hindayati Mustafidah, et al.
Published: (2019-05-01)