Soft projectile impact forces measurement using Hopkinson bars: application to ice, artificial bird and rubber

This work presents an experimental campaign of impacts of soft projectiles to measure the induced force during the impact. Three different materials acting as soft impactors that could strike against a aeronautical structural component: ice, artificial bird and rubber have been impacted at several v...

Full description

Bibliographic Details
Main Authors: del Cuvillo Ramón, Artero-Guerrero Jose Alfonso, Pernas-Sánchez Jesús, López Puente Jorge
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2021/04/epjconf_dymat2021_01008.pdf
Description
Summary:This work presents an experimental campaign of impacts of soft projectiles to measure the induced force during the impact. Three different materials acting as soft impactors that could strike against a aeronautical structural component: ice, artificial bird and rubber have been impacted at several velocities against an aluminium Hopkinson bar. This device has been instrumented with semiconductor strain gauges that allow to obtain the induced compression strain. Additionally, all the impacts were recorded using high-speed video cameras, allowing the kinematic analysis of the projectile during the impact. After the results study, it has been concluded that there is a linear dependency between the kinetic energy and the peak force for all three materials. Added to that, it has been proved that the higher peak force corresponds to ice, despite the kinetic energy, followed by rubber and finally the artificial bird. In addition, while ice and artificial bird projectiles get radially dispersed after the impact, rubber spheres rebound due to its different behaviour. The obtained data is of great interest to design structures which could be subjected to impacts of soft materials such as aeronautic structures
ISSN:2100-014X