Management of invasive Allee species

In this study, we use a discrete, two-patch population model of an Allee species to examine different methods in managing invasions. We first analytically examine the model to show the presence of the strong Allee effect, and then we numerically explore the model to test the effectiveness of differe...

Full description

Bibliographic Details
Main Authors: D. M. Chan, C. M. Kent, D. M. Johnson
Format: Article
Language:English
Published: Intercollegiate Biomathematics Alliance 2017-01-01
Series:Letters in Biomathematics
Subjects:
Online Access:http://dx.doi.org/10.1080/23737867.2017.1331712
Description
Summary:In this study, we use a discrete, two-patch population model of an Allee species to examine different methods in managing invasions. We first analytically examine the model to show the presence of the strong Allee effect, and then we numerically explore the model to test the effectiveness of different management strategies. As expected invasion is facilitated by lower Allee thresholds, greater carrying capacities and greater proportions of dispersers. These effects are interacting, however, and moderated by population growth rate. Using the gypsy moth as an example species, we demonstrate that the effectiveness of different invasion management strategies is context-dependent, combining complementary methods may be preferable, and the preferred strategy may differ geographically. Specifically, we find methods for restricting movement to be more effective in areas of contiguous habitat and high Allee thresholds, where methods involving mating disruptions and raising Allee thresholds are more effective in areas of high habitat fragmentation.
ISSN:2373-7867