Advances in the Theory of Compact Groups and Pro-Lie Groups in the Last Quarter Century

This article surveys the development of the theory of compact groups and pro-Lie groups, contextualizing the major achievements over 125 years and focusing on some progress in the last quarter century. It begins with developments in the 18th and 19th centuries. Next is from Hilbert’s Fifth Problem i...

Full description

Bibliographic Details
Main Authors: Karl H. Hofmann, Sidney A. Morris
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/10/3/190
id doaj-36bfb5efa8e94bdeb0285834fcc4917b
record_format Article
spelling doaj-36bfb5efa8e94bdeb0285834fcc4917b2021-09-25T23:44:51ZengMDPI AGAxioms2075-16802021-08-011019019010.3390/axioms10030190Advances in the Theory of Compact Groups and Pro-Lie Groups in the Last Quarter CenturyKarl H. Hofmann0Sidney A. Morris1Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, GermanySchool of Engineering, IT and Physical Sciences, Federation University Australia, P.O. Box 663, Ballarat, VIC 3353, AustraliaThis article surveys the development of the theory of compact groups and pro-Lie groups, contextualizing the major achievements over 125 years and focusing on some progress in the last quarter century. It begins with developments in the 18th and 19th centuries. Next is from Hilbert’s Fifth Problem in 1900 to its solution in 1952 by Montgomery, Zippin, and Gleason and Yamabe’s important structure theorem on almost connected locally compact groups. This half century included profound contributions by Weyl and Peter, Haar, Pontryagin, van Kampen, Weil, and Iwasawa. The focus in the last quarter century has been structure theory, largely resulting from extending Lie Theory to compact groups and then to pro-Lie groups, which are projective limits of finite-dimensional Lie groups. The category of pro-Lie groups is the smallest complete category containing Lie groups and includes all compact groups, locally compact abelian groups, and connected locally compact groups. Amongst the structure theorems is that each almost connected pro-Lie group <i>G</i> is homeomorphic to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>I</mi></msup><mo>×</mo><mi>C</mi></mrow></semantics></math></inline-formula> for a suitable set <i>I</i> and some compact subgroup <i>C</i>. Finally, there is a perfect generalization to compact groups <i>G</i> of the age-old natural duality of the group algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi><mo>[</mo><mi>G</mi><mo>]</mo></mrow></semantics></math></inline-formula> of a finite group <i>G</i> to its representation algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>, via the natural duality of the topological vector space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>I</mi></msup></semantics></math></inline-formula> to the vector space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></msup></semantics></math></inline-formula>, for <i>any</i> set <i>I</i>, thus opening a new approach to the Hochschild-Tannaka duality of compact groups.https://www.mdpi.com/2075-1680/10/3/190topological groupLie groupcompact grouppro-Lie groupLie algebraduality
collection DOAJ
language English
format Article
sources DOAJ
author Karl H. Hofmann
Sidney A. Morris
spellingShingle Karl H. Hofmann
Sidney A. Morris
Advances in the Theory of Compact Groups and Pro-Lie Groups in the Last Quarter Century
Axioms
topological group
Lie group
compact group
pro-Lie group
Lie algebra
duality
author_facet Karl H. Hofmann
Sidney A. Morris
author_sort Karl H. Hofmann
title Advances in the Theory of Compact Groups and Pro-Lie Groups in the Last Quarter Century
title_short Advances in the Theory of Compact Groups and Pro-Lie Groups in the Last Quarter Century
title_full Advances in the Theory of Compact Groups and Pro-Lie Groups in the Last Quarter Century
title_fullStr Advances in the Theory of Compact Groups and Pro-Lie Groups in the Last Quarter Century
title_full_unstemmed Advances in the Theory of Compact Groups and Pro-Lie Groups in the Last Quarter Century
title_sort advances in the theory of compact groups and pro-lie groups in the last quarter century
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2021-08-01
description This article surveys the development of the theory of compact groups and pro-Lie groups, contextualizing the major achievements over 125 years and focusing on some progress in the last quarter century. It begins with developments in the 18th and 19th centuries. Next is from Hilbert’s Fifth Problem in 1900 to its solution in 1952 by Montgomery, Zippin, and Gleason and Yamabe’s important structure theorem on almost connected locally compact groups. This half century included profound contributions by Weyl and Peter, Haar, Pontryagin, van Kampen, Weil, and Iwasawa. The focus in the last quarter century has been structure theory, largely resulting from extending Lie Theory to compact groups and then to pro-Lie groups, which are projective limits of finite-dimensional Lie groups. The category of pro-Lie groups is the smallest complete category containing Lie groups and includes all compact groups, locally compact abelian groups, and connected locally compact groups. Amongst the structure theorems is that each almost connected pro-Lie group <i>G</i> is homeomorphic to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>I</mi></msup><mo>×</mo><mi>C</mi></mrow></semantics></math></inline-formula> for a suitable set <i>I</i> and some compact subgroup <i>C</i>. Finally, there is a perfect generalization to compact groups <i>G</i> of the age-old natural duality of the group algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi><mo>[</mo><mi>G</mi><mo>]</mo></mrow></semantics></math></inline-formula> of a finite group <i>G</i> to its representation algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>, via the natural duality of the topological vector space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>I</mi></msup></semantics></math></inline-formula> to the vector space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mo>(</mo><mi>I</mi><mo>)</mo></mrow></msup></semantics></math></inline-formula>, for <i>any</i> set <i>I</i>, thus opening a new approach to the Hochschild-Tannaka duality of compact groups.
topic topological group
Lie group
compact group
pro-Lie group
Lie algebra
duality
url https://www.mdpi.com/2075-1680/10/3/190
work_keys_str_mv AT karlhhofmann advancesinthetheoryofcompactgroupsandproliegroupsinthelastquartercentury
AT sidneyamorris advancesinthetheoryofcompactgroupsandproliegroupsinthelastquartercentury
_version_ 1717368090531987456