Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers

We report on reversible electric-field-driven magnetic domain wall motion in a Cu/Ni multilayer on a ferroelectric BaTiO3 substrate. In our heterostructure, strain-coupling to ferroelastic domains with in-plane and perpendicular polarization in the BaTiO3 substrate causes the for...

Full description

Bibliographic Details
Main Authors: Diego López González, Yasuhiro Shirahata, Ben Van de Wiele, Kévin J. A. Franke, Arianna Casiraghi, Tomoyasu Taniyama, Sebastiaan van Dijken
Format: Article
Language:English
Published: AIP Publishing LLC 2017-03-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4979267
id doaj-36e1ffb3ef48490a8bcdd894c6fe915b
record_format Article
spelling doaj-36e1ffb3ef48490a8bcdd894c6fe915b2020-11-24T23:43:18ZengAIP Publishing LLCAIP Advances2158-32262017-03-0173035119035119-610.1063/1.4979267058703ADVElectric-field-driven domain wall dynamics in perpendicularly magnetized multilayersDiego López González0Yasuhiro Shirahata1Ben Van de Wiele2Kévin J. A. Franke3Arianna Casiraghi4Tomoyasu Taniyama5Sebastiaan van Dijken6NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, FinlandMaterials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, JapanDepartment of Electrical Energy, Systems and Automation, Ghent University, Ghent B-9000, BelgiumNanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, FinlandNanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, FinlandMaterials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, JapanNanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, FinlandWe report on reversible electric-field-driven magnetic domain wall motion in a Cu/Ni multilayer on a ferroelectric BaTiO3 substrate. In our heterostructure, strain-coupling to ferroelastic domains with in-plane and perpendicular polarization in the BaTiO3 substrate causes the formation of domains with perpendicular and in-plane magnetic anisotropy, respectively, in the Cu/Ni multilayer. Walls that separate magnetic domains are elastically pinned onto ferroelectric domain walls. Using magneto-optical Kerr effect microscopy, we demonstrate that out-of-plane electric field pulses across the BaTiO3 substrate move the magnetic and ferroelectric domain walls in unison. Our experiments indicate an exponential increase of domain wall velocity with electric field strength and opposite domain wall motion for positive and negative field pulses. The application of a magnetic field does not affect the velocity of magnetic domain walls, but independently tailors their internal spin structure, causing a change in domain wall dynamics at high velocities.http://dx.doi.org/10.1063/1.4979267
collection DOAJ
language English
format Article
sources DOAJ
author Diego López González
Yasuhiro Shirahata
Ben Van de Wiele
Kévin J. A. Franke
Arianna Casiraghi
Tomoyasu Taniyama
Sebastiaan van Dijken
spellingShingle Diego López González
Yasuhiro Shirahata
Ben Van de Wiele
Kévin J. A. Franke
Arianna Casiraghi
Tomoyasu Taniyama
Sebastiaan van Dijken
Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers
AIP Advances
author_facet Diego López González
Yasuhiro Shirahata
Ben Van de Wiele
Kévin J. A. Franke
Arianna Casiraghi
Tomoyasu Taniyama
Sebastiaan van Dijken
author_sort Diego López González
title Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers
title_short Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers
title_full Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers
title_fullStr Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers
title_full_unstemmed Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers
title_sort electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers
publisher AIP Publishing LLC
series AIP Advances
issn 2158-3226
publishDate 2017-03-01
description We report on reversible electric-field-driven magnetic domain wall motion in a Cu/Ni multilayer on a ferroelectric BaTiO3 substrate. In our heterostructure, strain-coupling to ferroelastic domains with in-plane and perpendicular polarization in the BaTiO3 substrate causes the formation of domains with perpendicular and in-plane magnetic anisotropy, respectively, in the Cu/Ni multilayer. Walls that separate magnetic domains are elastically pinned onto ferroelectric domain walls. Using magneto-optical Kerr effect microscopy, we demonstrate that out-of-plane electric field pulses across the BaTiO3 substrate move the magnetic and ferroelectric domain walls in unison. Our experiments indicate an exponential increase of domain wall velocity with electric field strength and opposite domain wall motion for positive and negative field pulses. The application of a magnetic field does not affect the velocity of magnetic domain walls, but independently tailors their internal spin structure, causing a change in domain wall dynamics at high velocities.
url http://dx.doi.org/10.1063/1.4979267
work_keys_str_mv AT diegolopezgonzalez electricfielddrivendomainwalldynamicsinperpendicularlymagnetizedmultilayers
AT yasuhiroshirahata electricfielddrivendomainwalldynamicsinperpendicularlymagnetizedmultilayers
AT benvandewiele electricfielddrivendomainwalldynamicsinperpendicularlymagnetizedmultilayers
AT kevinjafranke electricfielddrivendomainwalldynamicsinperpendicularlymagnetizedmultilayers
AT ariannacasiraghi electricfielddrivendomainwalldynamicsinperpendicularlymagnetizedmultilayers
AT tomoyasutaniyama electricfielddrivendomainwalldynamicsinperpendicularlymagnetizedmultilayers
AT sebastiaanvandijken electricfielddrivendomainwalldynamicsinperpendicularlymagnetizedmultilayers
_version_ 1725502115489513472