A Fault-Tolerant Steering Prototype for X-Rudder Underwater Vehicles
The X-rudder concept has been applied to more and more autonomous underwater vehicles (AUVs) in recent years, since it shows better maneuverability and robustness against rudder failure compared to the traditional cruciform rudder. Aiming at the fault-tolerant control of the X-rudder AUV (hereinafte...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/20/7/1816 |
id |
doaj-36f1b2b199d64ff58fb8bdf8e238ee20 |
---|---|
record_format |
Article |
spelling |
doaj-36f1b2b199d64ff58fb8bdf8e238ee202020-11-25T03:51:09ZengMDPI AGSensors1424-82202020-03-01207181610.3390/s20071816s20071816A Fault-Tolerant Steering Prototype for X-Rudder Underwater VehiclesWenjin Wang0Ying Chen1Yingkai Xia2Guohua Xu3Wei Zhang4Hongming Wu5School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, ChinaDepartment of Mechatronics Engineering, Wuhan Business University, Wuhan 430056, ChinaSchool of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, ChinaSchool of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, ChinaWuhan Second Ship Design and Research Institute, Wuhan 430205, ChinaSchool of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, ChinaThe X-rudder concept has been applied to more and more autonomous underwater vehicles (AUVs) in recent years, since it shows better maneuverability and robustness against rudder failure compared to the traditional cruciform rudder. Aiming at the fault-tolerant control of the X-rudder AUV (hereinafter abbreviated as xAUV), a fault-tolerant steering prototype system which can realize dynamics control, autonomous rudder fault detection and fault-tolerant control is presented in this paper. The steering prototype system is deployed on a verification platform, an xAUV, in which the monitor software is developed based on the factory method and the onboard software is developed based on the finite state machine (FSM). Dual-loop increment feedback control (DIFC) is first introduced to obtain smooth virtual rudder commands considering actuator’s limitations. Then the virtual rudder commands are transformed into X-rudder commands based on the mapping theory. In rudder fault diagnosis, an optimized particle filter is proposed for estimating rudder effect deduction, with proposal distribution derived from unscented Kalman filter (UKF). Then the fault type can be determined by analyzing indicators related to the deduction. Fault-tolerant control is addressed by dealing with nonlinear programming (NLP) problem, where minimization of allocation errors and control efforts are set as the optimization objectives, and rudder failure, saturation and actuators limitations are considered as constraints. The fixed-point iteration method is utilized to solve this optimization problem. Many field tests have been conducted in towing tank. The experimental results demonstrate that the proposed steering prototype system is able to detect rudder faults and is robust against rudder failure.https://www.mdpi.com/1424-8220/20/7/1816x-rudder auvcontrol allocationfault diagnosisfault-tolerant controlfield tests |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wenjin Wang Ying Chen Yingkai Xia Guohua Xu Wei Zhang Hongming Wu |
spellingShingle |
Wenjin Wang Ying Chen Yingkai Xia Guohua Xu Wei Zhang Hongming Wu A Fault-Tolerant Steering Prototype for X-Rudder Underwater Vehicles Sensors x-rudder auv control allocation fault diagnosis fault-tolerant control field tests |
author_facet |
Wenjin Wang Ying Chen Yingkai Xia Guohua Xu Wei Zhang Hongming Wu |
author_sort |
Wenjin Wang |
title |
A Fault-Tolerant Steering Prototype for X-Rudder Underwater Vehicles |
title_short |
A Fault-Tolerant Steering Prototype for X-Rudder Underwater Vehicles |
title_full |
A Fault-Tolerant Steering Prototype for X-Rudder Underwater Vehicles |
title_fullStr |
A Fault-Tolerant Steering Prototype for X-Rudder Underwater Vehicles |
title_full_unstemmed |
A Fault-Tolerant Steering Prototype for X-Rudder Underwater Vehicles |
title_sort |
fault-tolerant steering prototype for x-rudder underwater vehicles |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2020-03-01 |
description |
The X-rudder concept has been applied to more and more autonomous underwater vehicles (AUVs) in recent years, since it shows better maneuverability and robustness against rudder failure compared to the traditional cruciform rudder. Aiming at the fault-tolerant control of the X-rudder AUV (hereinafter abbreviated as xAUV), a fault-tolerant steering prototype system which can realize dynamics control, autonomous rudder fault detection and fault-tolerant control is presented in this paper. The steering prototype system is deployed on a verification platform, an xAUV, in which the monitor software is developed based on the factory method and the onboard software is developed based on the finite state machine (FSM). Dual-loop increment feedback control (DIFC) is first introduced to obtain smooth virtual rudder commands considering actuator’s limitations. Then the virtual rudder commands are transformed into X-rudder commands based on the mapping theory. In rudder fault diagnosis, an optimized particle filter is proposed for estimating rudder effect deduction, with proposal distribution derived from unscented Kalman filter (UKF). Then the fault type can be determined by analyzing indicators related to the deduction. Fault-tolerant control is addressed by dealing with nonlinear programming (NLP) problem, where minimization of allocation errors and control efforts are set as the optimization objectives, and rudder failure, saturation and actuators limitations are considered as constraints. The fixed-point iteration method is utilized to solve this optimization problem. Many field tests have been conducted in towing tank. The experimental results demonstrate that the proposed steering prototype system is able to detect rudder faults and is robust against rudder failure. |
topic |
x-rudder auv control allocation fault diagnosis fault-tolerant control field tests |
url |
https://www.mdpi.com/1424-8220/20/7/1816 |
work_keys_str_mv |
AT wenjinwang afaulttolerantsteeringprototypeforxrudderunderwatervehicles AT yingchen afaulttolerantsteeringprototypeforxrudderunderwatervehicles AT yingkaixia afaulttolerantsteeringprototypeforxrudderunderwatervehicles AT guohuaxu afaulttolerantsteeringprototypeforxrudderunderwatervehicles AT weizhang afaulttolerantsteeringprototypeforxrudderunderwatervehicles AT hongmingwu afaulttolerantsteeringprototypeforxrudderunderwatervehicles AT wenjinwang faulttolerantsteeringprototypeforxrudderunderwatervehicles AT yingchen faulttolerantsteeringprototypeforxrudderunderwatervehicles AT yingkaixia faulttolerantsteeringprototypeforxrudderunderwatervehicles AT guohuaxu faulttolerantsteeringprototypeforxrudderunderwatervehicles AT weizhang faulttolerantsteeringprototypeforxrudderunderwatervehicles AT hongmingwu faulttolerantsteeringprototypeforxrudderunderwatervehicles |
_version_ |
1724488489560440832 |