Guidance on Implementing Renewable Energy Systems in Australian Homes

The purpose of this paper is to examine several real house cases as renewable energy resources are installed. It is an empirical study, based on first principles applied to measured data. In the first case presented, a PV solar system has been installed and a hybrid vehicle purchased. Battery storag...

Full description

Bibliographic Details
Main Authors: Peter Horan, Mark B. Luther, Hong Xian Li
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/9/2666
Description
Summary:The purpose of this paper is to examine several real house cases as renewable energy resources are installed. It is an empirical study, based on first principles applied to measured data. In the first case presented, a PV solar system has been installed and a hybrid vehicle purchased. Battery storage is being considered. Smart Meter data (provided in Victoria, Australia) measures the electrical energy flowing to and from the grid in each half hour. Missing is the story about what the house is generating and what its energy requirements are through each half hour interval. We apply actual (on site) solar PV data to this study, resolving the unknown energy flows. Analysing energy flow has revealed that there are five fundamental quantities which determine performance, namely energy load, energy import, energy harvesting, energy export and energy storage. As a function of PV size these quantities depend on four parameters, easily derivable from the Smart Meter data, namely the house load, the night-time house load (no PV generation), the rating of the solar PV system and the tariffs charged. This reveals most of the information for providing advice on PV array size and whether to install a battery. An important discovery is that a battery, no matter what size, needs a PV system large enough to charge it during the winter months. The analysis is extended to two more houses located within 5 km for which detailed solar data is unavailable.
ISSN:1996-1073